

# EE457: Digital IC Design Fall Semester 2019 Project 3 Report Cover Sheet

# Due 11/13/2019

# PROJECT TITLE: <u>16-to-1 Multiplexer (MUX) Using Both Conventional CMOS and</u> <u>Transmission Gates</u>

Student Name: Kevin Chen

| Put Check for completion | Topics                                                                                                                           | GRAI                            | DES                  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| $\checkmark$             | Section 1: Executive Summary                                                                                                     |                                 | /5                   |
| $\checkmark$             | Section 2: Introduction and Background                                                                                           |                                 | /5                   |
| $\checkmark$             | Section 3: Electric Circuit Schematics                                                                                           |                                 | /10                  |
| $\checkmark$             | Section 4: Detailed Electric Layouts                                                                                             |                                 | /25                  |
| ✓                        | Section 5: IRSIM Logic Simulations and<br>Measurements for Layout and Schematic (must<br>provide comparisons between the two)    |                                 | /10                  |
| ✓                        | Section 6: LTSPICE code and <u>parasitic extractions</u> with calculation analysis for charge sharing. Put only samples of code. |                                 | /15                  |
| ✓                        | Section 7: Measurements in LTSPICE for delays for<br>Layout and Schematic (must provide comparisons<br>between the two)          |                                 | /15                  |
| ✓                        | Section 8: Measurements of power, delay, chip area, timing, number of transistors for the layout.                                | Power<br>Delay<br>Area<br>#tran | /2<br>/2<br>/2<br>/4 |
| $\checkmark$             | Section 9: Conclusion and References                                                                                             |                                 | /5                   |
|                          | Penalty                                                                                                                          |                                 |                      |
|                          | TOTAL                                                                                                                            | /                               | 100                  |

# Table of Contents

| Section 1: Executive Summary:                      | 3  |
|----------------------------------------------------|----|
| Section 2: Introduction and Background:            |    |
| Section 3: Electric Schematic:                     |    |
| Section 4: Electric Layout:                        |    |
| Section 5: IRSIM Simulations:                      |    |
| Section 5.1: Schematic:                            |    |
| Section 5.2: Layout:                               |    |
| Section 5.3: Comparison:                           |    |
| Section 6: LTSPICE Code and Parasitic Extractions: |    |
| Section 7: LTSPICE Simulations:                    | 60 |
| Section 7.1: Schematic:                            | 61 |
| Section 7.2: Layout:                               |    |
| Section 7.3: Comparison:                           |    |
| Section 8: Measurement Summary:                    |    |
| Section 9: Conclusion:                             |    |
| References:                                        |    |

#### Section 1: Executive Summary:

In this project, we will be designing a CMOS of a 16-to-1 Multiplexer (MUX) using Electric. By using the Electric software, we'll be creating four different designs, a conventional schematic design, a conventional layout design, a transmission gate (TG) schematic design, and a transmission gate (TG) layout design. The purpose for the use of the transmission gate design is for efficiency and to save on transistors. In order to test if our designs are correct, we'll be generating waveforms to test for correctness by giving a specific input and expecting a certain output. We'll be generating the waveforms using two different software, IRSIM and LTSPICE. The two different software would help support our design by increasing our test methods and providing us different test properties. After obtaining the waveforms for the two different design, we'll compare them and observe their similarities and differences.

To design a conventional 16-to-1 Multiplexer (MUX), we plan to use three different designs and combining them together to make a 4-to-1 Multiplexer. One design we plan to use is a three input AND gate, the second design we plan to use is a four input OR gate, and the third design we plan to use is an inverter. By combining four AND gates, one OR gates, and two inverters, we'll be able to obtain a 4-to-1 Multiplexer. After making the 4-to-1 Multiplexer, we create 4 more 4-to-1 Multiplexers and link them together to create a 16-to-1 Multiplexer. We would also test each individual design using waveforms before putting them together to make sure they satisfy our requirements. By testing each individual design would also help with the debugging process when combining the two designs together because we'll know where the problem lies in case the waveform doesn't turn out like the way expected.

To design a Transmission Gate (TG) 16-to-1 Multiplexer (MUX), we plan to use two designs and combining them together to make a 4-to-1 Multiplexer. One design we plan to use is an inverter, and the second design we plan to use is a transmission gate. By combining two inverters, and six transmission gates, we'll be able to obtain a 4-to-1 Multiplexer. After making the 4-to-1 Multiplexer, we create 4 more 4-to-1 Multiplexers and link them together to create a 16-to-1 Multiplexer. We would also test each individual design using waveforms before putting them together to make sure they satisfy our requirements. By testing each individual design would also help with the debugging process when combining the two designs together because we'll know where the problem lies in case the waveform doesn't turn out like the way expected.

#### Section 2: Introduction and Background:

A 16-to-1 Multiplexer is a form of digital circuit that is used to select a certain data. The 16-to-1 Multiplexer would have a total of 20 inputs and one output. 16 of the inputs are data, and the other 4 are what's used to select those data. The output would be the one of the 16 inputs, depending on what the selector selects. Multiplexers itself are often used in larger circuitry and helps a lot in terms of which data are being selected so it could be used for modification without modifying the other data. The truth table of the 16-to-1 Multiplexer is shown on Table 1.

The approach we plan to take to design the conventional 16-to-1 Multiplexer would be to use three different designs and combining them together. The three designs that we plan to use would be a three input AND gate, a four input OR gate, and an inverter. The reason for this approach is because we can't directly build a conventional 16-to-1 Multiplexer without first building a 4-to-1 Multiplexer or any Multiplexer, and we can't build a Multiplexer without using an AND gate, OR gate, or an inverter. By applying four AND gates, one OR gate, and two inverters, we'll be able to obtain a 4-to-1 Multiplexer. After making the 4-to-1 Multiplexer, we create 4 more 4-to-1 Multiplexer and link them together to create a 16-to-1 Multiplexer. The figures on the next few pages show the schematic and layout of the two input OR gate, an inverter, and a 4-to-1 Multiplexer. In addition, the truth table of a three input AND gate is shown on Table 2; the truth table of a four input OR gate is shown on Table 3; the truth table of an inverter is shown on Table 4; the truth table of a 4-to-1 Multiplexer is shown on Table 5.

The approach we plan to take to design the transmission gate 16-to-1 Multiplexer would be to use two different designs and combining them together. The two designs that we plan to use would be a transmission gate, and an inverter. The reason for this approach is because we can't directly build a transmission gate 16-to-1 Multiplexer without first building a 4-to-1 Multiplexer or any Multiplexer, and we can't build a Multiplexer without using a transmission gate, or an inverter. By applying six transmission gates, and two inverters, we'll be able to obtain a 4-to-1 Multiplexer. After making the 4-to-1 Multiplexer, we create 4 more 4-to-1 Multiplexer and link them together to create a 16-to-1 Multiplexer. The figures on the next few pages show the schematic and layout of the 4-to-1 Multiplexer, which consists of six transmission gates, and two inverters. The truth table of a 4-to-1 Multiplexer is already shown on Table 5.

| Input: S3 | Input: S2 | Input: S1 | Input: S0 | Output: 16-to-1<br>Multiplexer |
|-----------|-----------|-----------|-----------|--------------------------------|
| 0         | 0         | 0         | 0         | D0                             |
| 0         | 0         | 0         | 1         | D1                             |
| 0         | 0         | 1         | 0         | D2                             |
| 0         | 0         | 1         | 1         | D3                             |
| 0         | 1         | 0         | 0         | D4                             |
| 0         | 1         | 0         | 1         | D5                             |
| 0         | 1         | 1         | 0         | D6                             |
| 0         | 1         | 1         | 1         | D7                             |
| 1         | 0         | 0         | 0         | D8                             |
| 1         | 0         | 0         | 1         | D9                             |
| 1         | 0         | 1         | 0         | D10                            |
| 1         | 0         | 1         | 1         | D11                            |
| 1         | 1         | 0         | 0         | D12                            |
| 1         | 1         | 0         | 1         | D13                            |
| 1         | 1         | 1         | 0         | D14                            |
| 1         | 1         | 1         | 1         | D15                            |

Boolean Expression:

 $\begin{aligned} Vout &= \overline{S_0S_1S_2S_3}D_0 + S_0\overline{S_1S_2S_3}D_1 + \overline{S_0}S_1\overline{S_2S_3}D_2 + S_0S_1\overline{S_2S_3}D_3 + \\ \overline{S_0S_1}S_2\overline{S_3}D_4 + S_0\overline{S_1}S_2\overline{S_3}D_5 + \overline{S_0}S_1S_2\overline{S_3}D_6 + S_0S_1S_2\overline{S_3}D_7 + \\ \overline{S_0S_1S_2}S_3D_8 + S_0\overline{S_1S_2}S_3D_9 + \overline{S_0}S_1\overline{S_2}S_3D_{10} + S_0S_1\overline{S_2}S_3D_{11} + \\ \overline{S_0S_1}S_2S_3D_{12} + S_0\overline{S_1}S_2S_3D_{13} + \overline{S_0}S_1S_2S_3D_{14} + S_0S_1S_2S_3D_{15} \end{aligned}$ 

| Input: A | Input: B | Input: C | Output: A AND B<br>AND C |
|----------|----------|----------|--------------------------|
| 0        | 0        | 0        | 0                        |
| 0        | 0        | 1        | 0                        |
| 0        | 1        | 0        | 0                        |
| 0        | 1        | 1        | 0                        |
| 1        | 0        | 0        | 0                        |
| 1        | 0        | 1        | 0                        |
| 1        | 1        | 0        | 0                        |
| 1        | 1        | 1        | 1                        |

Table 2: Truth Table of a Three Input AND Gate

Boolean Expression: Vout = A \* B \* C

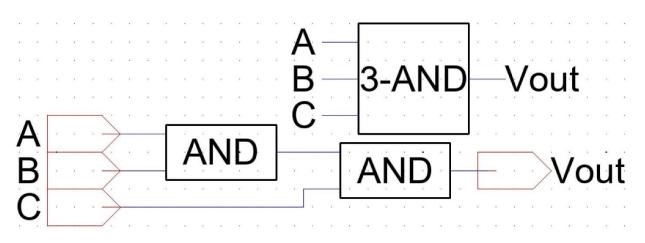



Figure 1: Schematic Design of a Three Input AND Gate

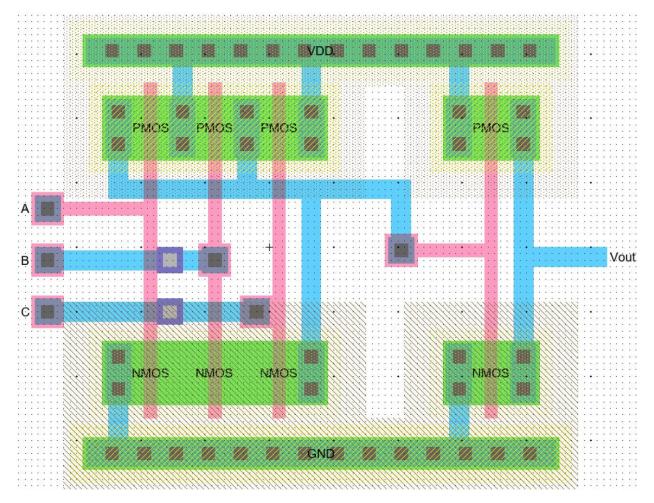



Figure 2: Layout Design of a Three Input AND Gate

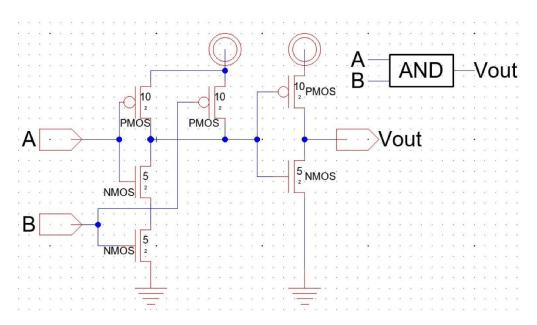



Figure 3: Schematic Design of a Two Input AND Gate That's Used

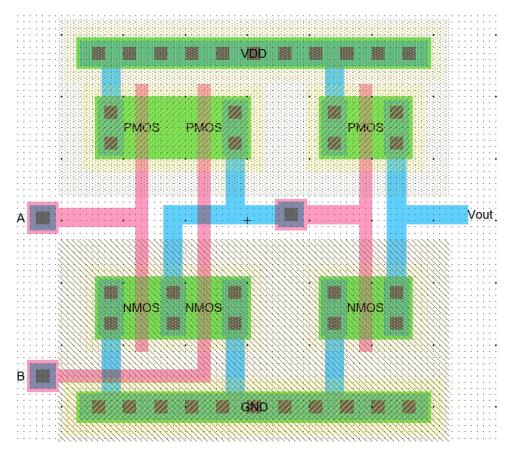



Figure 4: Layout Design of a Two Input AND Gate That's Used

| Input: A | Input: B | Input: C | Input: D | Output: A OR B<br>OR C OR D |
|----------|----------|----------|----------|-----------------------------|
| 0        | 0        | 0        | 0        | 0                           |
| 0        | 0        | 0        | 1        | 1                           |
| 0        | 0        | 1        | 0        | 1                           |
| 0        | 0        | 1        | 1        | 1                           |
| 0        | 1        | 0        | 0        | 1                           |
| 0        | 1        | 0        | 1        | 1                           |
| 0        | 1        | 1        | 0        | 1                           |
| 0        | 1        | 1        | 1        | 1                           |
| 1        | 0        | 0        | 0        | 1                           |
| 1        | 0        | 0        | 1        | 1                           |
| 1        | 0        | 1        | 0        | 1                           |
| 1        | 0        | 1        | 1        | 1                           |
| 1        | 1        | 0        | 0        | 1                           |
| 1        | 1        | 0        | 1        | 1                           |
| 1        | 1        | 1        | 0        | 1                           |
| 1        | 1        | 1        | 1        | 1                           |

| Table 3: Truth Table of a Four Input OR Gate |
|----------------------------------------------|
|----------------------------------------------|

Boolean Expression: Vout = A + B + C + D

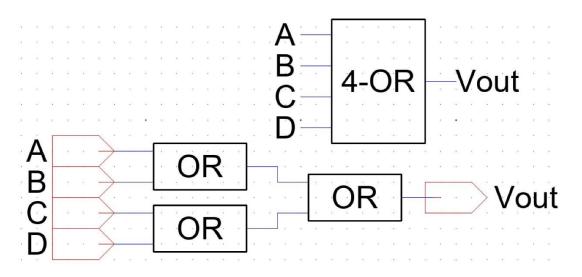



Figure 5: Schematic Design of a Four Input OR Gate

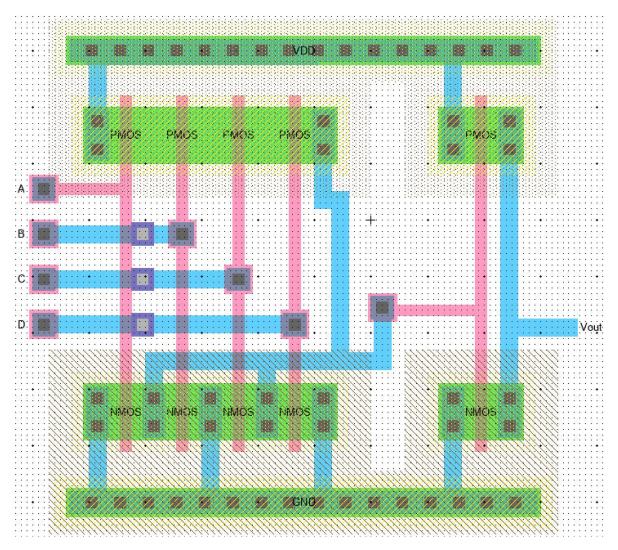



Figure 6: Layout Design of a Four Input OR Gate

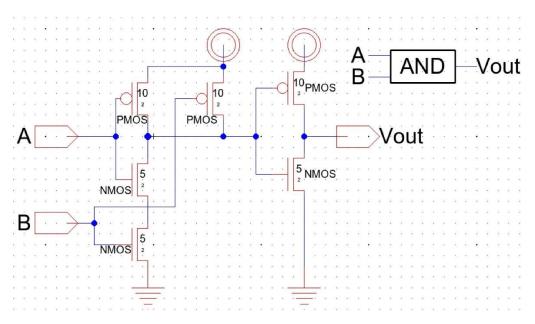



Figure 7: Schematic Design of a Two Input OR Gate That's Used

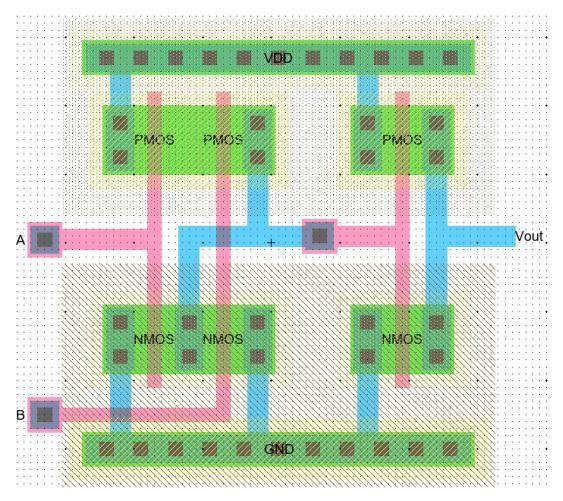
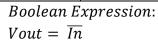




Figure 8: Layout Design of a Two Input AND Gate That's Used

| 1 |
|---|
| 1 |
| 0 |
|   |

Table 4: Truth Table of an Inverter



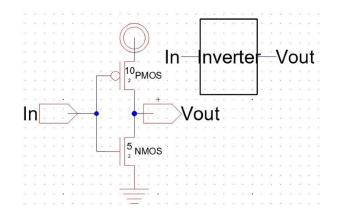



Figure 9: Schematic Design of an Inverter

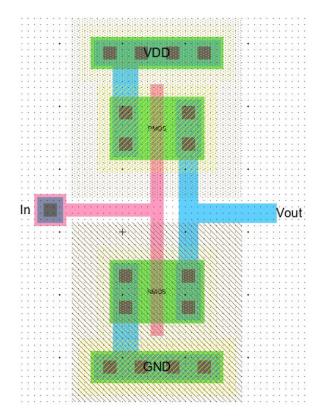
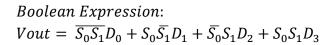




Figure 10: Layout Design of an Inverter

| Input: S1 | Input: S0 | Output: 4-to-1 Multiplexer |
|-----------|-----------|----------------------------|
| 0         | 0         | A                          |
| 0         | 1         | В                          |
| 1         | 0         | С                          |
| 1         | 1         | D                          |

Table 5: Truth Table of a 4-to-1 Multiplexer



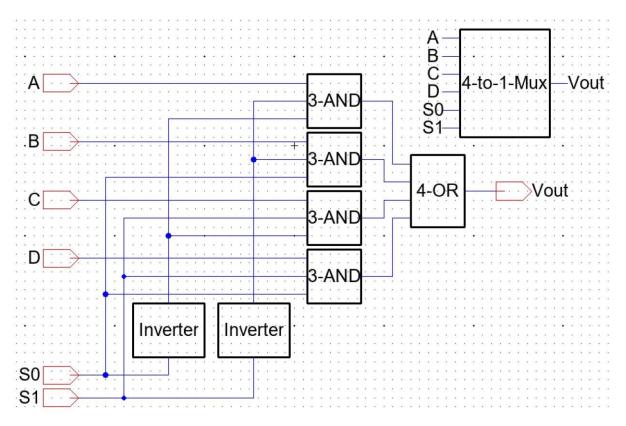



Figure 11: Schematic Design of a 4-to-1 Multiplexer

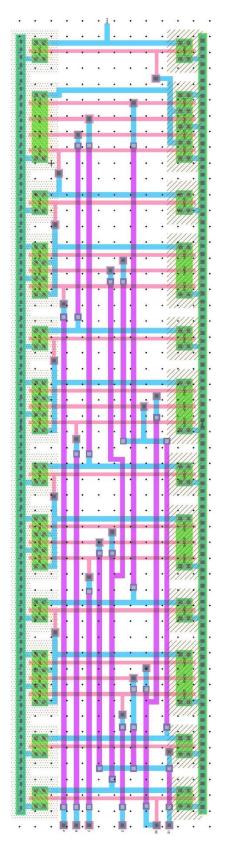



Figure 12.0: Layout Design of a 4-to-1 Multiplexer (Landscape)

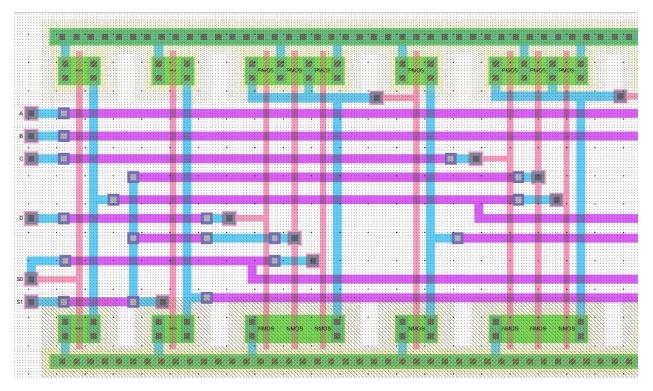



Figure 12.1: Layout Design of a 4-to-1 Multiplexer Zoomed (Left)

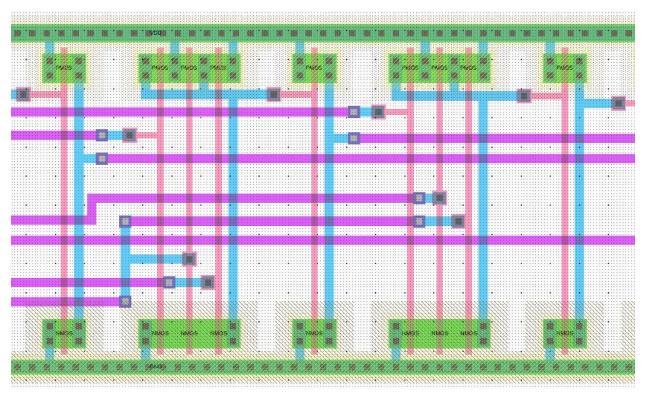



Figure 12.2: Layout Design of a 4-to-1 Multiplexer Zoomed (Middle)

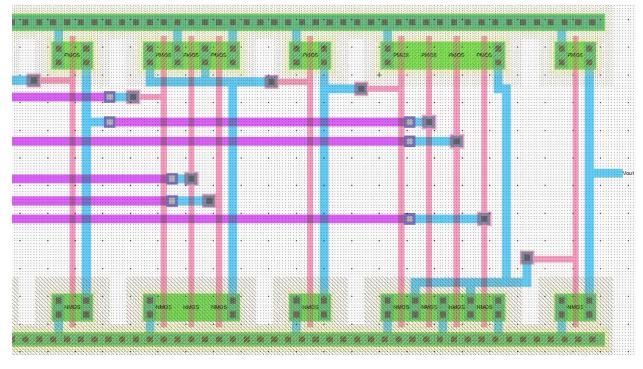



Figure 12.3: Layout Design of a 4-to-1 Multiplexer Zoomed (Right)

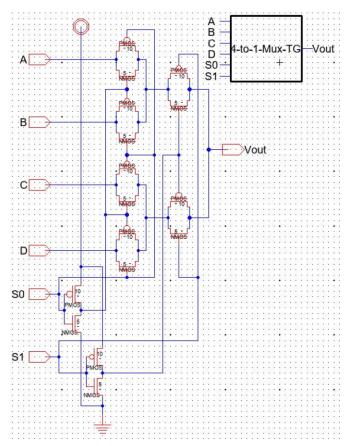



Figure 13: Schematic Design of a 4-to-1 Multiplexer Transmission Gate

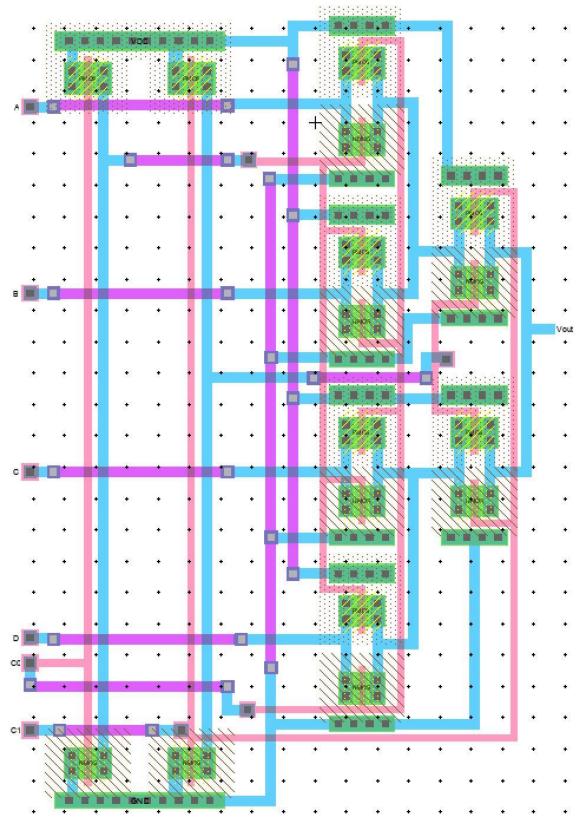



Figure 14.0: Layout Design of a 4-to-1 Multiplexer Transmission Gate

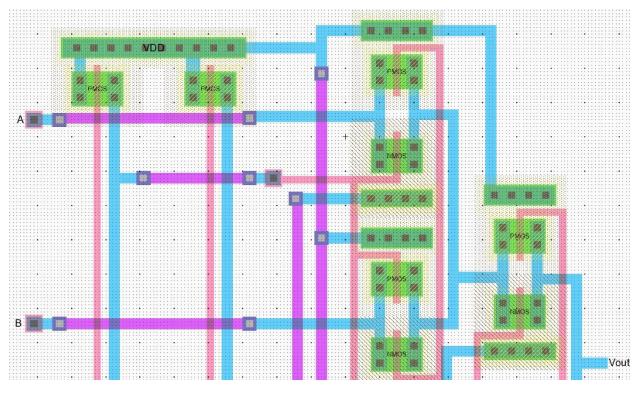



Figure 14.1: Layout Design of a 4-to-1 Multiplexer Transmission Gate Zoomed (Top)

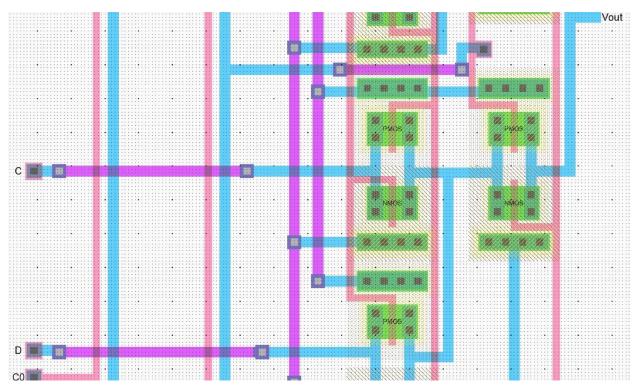



Figure 14.2: Layout Design of a 4-to-1 Multiplexer Transmission Gate Zoomed (Middle)

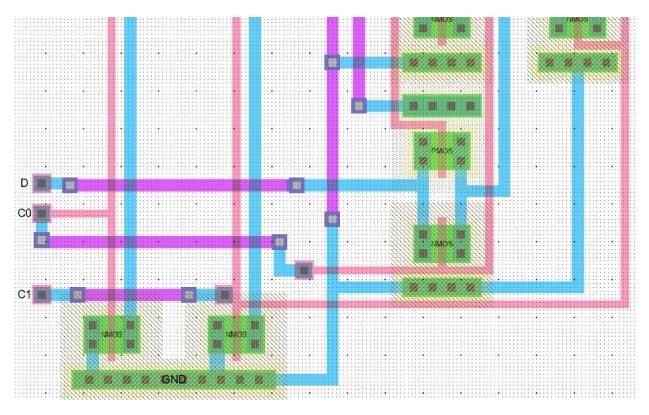



Figure 14.3: Layout Design of a 4-to-1 Multiplexer Transmission Gate Zoomed (Bottom)

#### Section 3: Electric Schematic:

We created a schematic of the conventional 16-to-1 Multiplexer by combining five 4-to-1 Multiplexers (Figure 11) together, using its icon. If there were any problems with the 4-to-1 Multiplexer, then we would have to go back to see the parts it was built from. In this case, the parts that it was built from are a two input AND gate, which becomes a three input AND gate, two input OR gate, which becomes a four input OR gate, and an inverter. It was combined by connecting the output of four 4-to-1 Multiplexer to the four inputs on another 4-to-1 Multiplexer. Figure 15 shows the schematic design that was built using Electric of the conventional 16-to-1 Multiplexer. Figure 16 shows the Design Rule Check (DRC) that was performed on the schematic for the conventional 16-to-1 Multiplexer; it indicates that there were no errors or warning with the schematic.

For the transmission gate 16-to-1 Multiplexer, it's created by combining five transmission gate 4-to-1 Multiplexer (Figure 13). It was combined by connecting the output of four transmission gate 4-to-1 Multiplexer to the four inputs on another transmission gate 4-to-1 Multiplexer. Figure 17 shows the schematic design that was built using Electric of the transmission gate 16-to-1 Multiplexer. Figure 18 shows the Design Rule Check (DRC) that was performed on the schematic for the transmission gate 16-to-1 Multiplexer; it indicates that there were no errors or warning with the schematic.

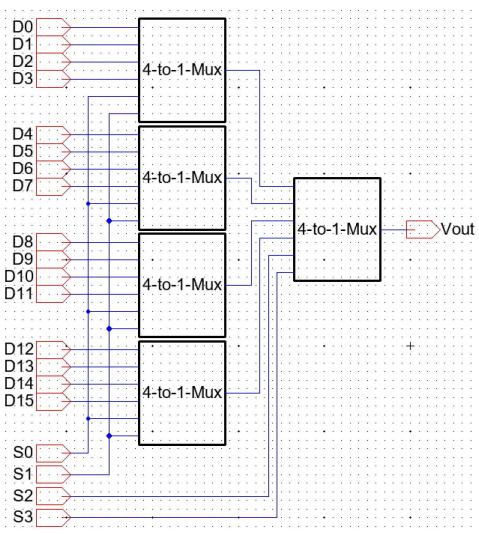



Figure 15: Schematic Design of a 16-to-1 Multiplexer

| 😟 Electric Messages                             |  |
|-------------------------------------------------|--|
| 55                                              |  |
| Checking schematic cell 'AND{sch}'              |  |
| No errors found                                 |  |
| Checking schematic cell '3-AND{sch}'            |  |
| No errors found                                 |  |
| Checking schematic cell 'OR{sch}'               |  |
| No errors found                                 |  |
| Checking schematic cell '4-OR{sch}'             |  |
| No errors found                                 |  |
| Checking schematic cell 'Inverter{sch}'         |  |
| No errors found                                 |  |
| Checking schematic cell '4-to-1-Mux{sch}'       |  |
| No errors found                                 |  |
| Checking schematic cell '16-to-1-Mux{sch}'      |  |
| No errors found                                 |  |
| 0 errors and 0 warnings found (took 0.031 secs) |  |

Figure 16: Design Rule Check (DRC) of a 16-to-1 Multiplexer Schematic Design

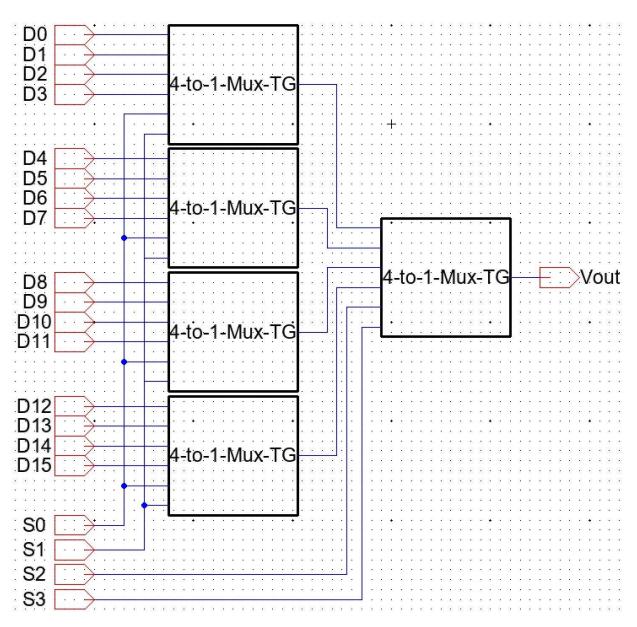



Figure 17: Schematic Design of a 16-to-1 Multiplexer Transmission Gate

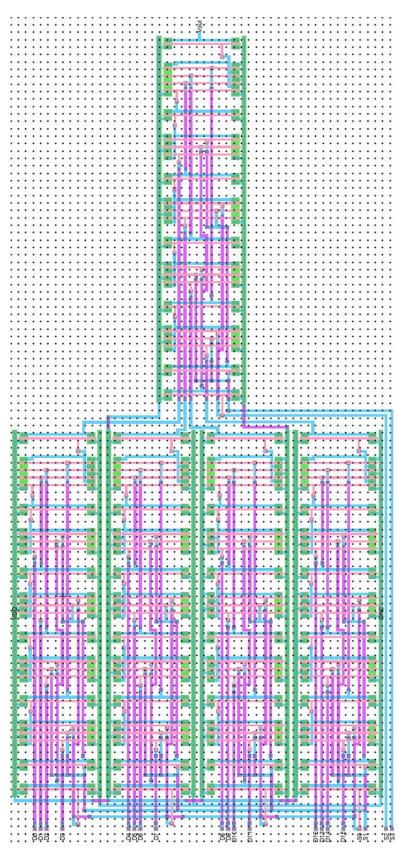

| Electric Messages       | ======9================================ |
|-------------------------|-----------------------------------------|
| Checking schematic cell | '4-to-1-Mux-TG{sch}'                    |
| No errors found         |                                         |
| Checking schematic cell | '16-to-1-Mux-TG{sch}'                   |
| No errors found         |                                         |
| 0 errors and 0 warnings | found (took 0.031 secs)                 |

Figure 18: Design Rule Check (DRC) of a 16-to-1 Multiplexer Transmission Gate Schematic Design

#### Section 4: Electric Layout:

We created a layout of the conventional 16-to-1 Multiplexer by combining five 4-to-1 Multiplexers (Figure 12) together. If there were any problems with the 4-to-1 Multiplexer, then we would have to go back to see the parts it was built from. In this case, the parts that it was built from are a two input AND gate, which becomes a three input AND gate, two input OR gate, which becomes a four input OR gate, and an inverter. It was combined by connecting the output of four 4-to-1 Multiplexer to the four inputs on another 4-to-1 Multiplexer. Figure 19 shows the layout design that was built using Electric of the conventional 16-to-1 Multiplexer. There is an overview and a zoomed version of the layout since the overview isn't clear enough. In addition, if additional justifications are needed, refer to Figure 12. Figure 20 shows the Design Rule Check (DRC) and Well Check that was performed on the layout for the conventional 16-to-1 Multiplexer; it indicates that there were no errors or warning with the layout.

For the transmission gate 16-to-1 Multiplexer, it's created by combining five transmission gate 4-to-1 Multiplexer (Figure 14). It was combined by connecting the output of four transmission gate 4-to-1 Multiplexer to the four inputs on another transmission gate 4-to-1 Multiplexer. Figure 21 shows the layout design that was built using Electric of the transmission gate 16-to-1 Multiplexer. There is an overview and a zoomed version of the layout since the overview isn't clear enough. In addition, if additional justifications are needed, refer to Figure 14. Figure 22 shows the Design Rule Check (DRC) and Well Check that was performed on the layout for the transmission gate 16-to-1 Multiplexer; it indicates that there were no errors or warning with the layout.



*Figure 19.0: Layout Design of a 16-to-1 Multiplexer (Landscape)* 

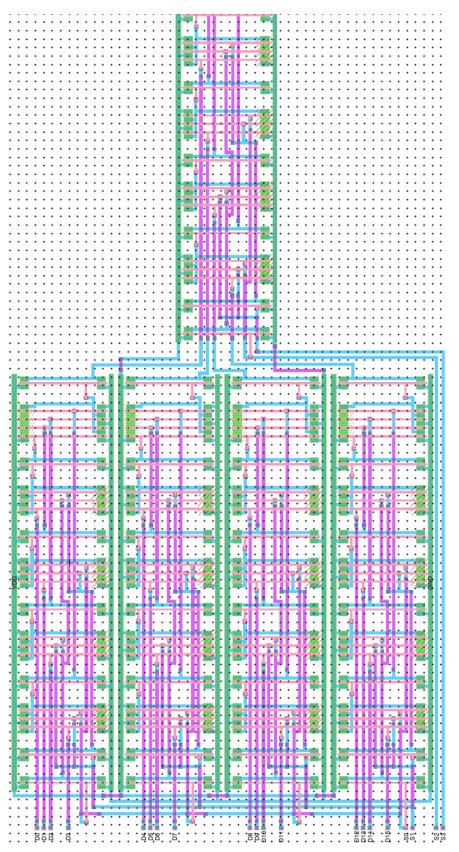



Figure 19.1: Layout Design of a 16-to-1 Multiplexer Zoomed (Landscape)

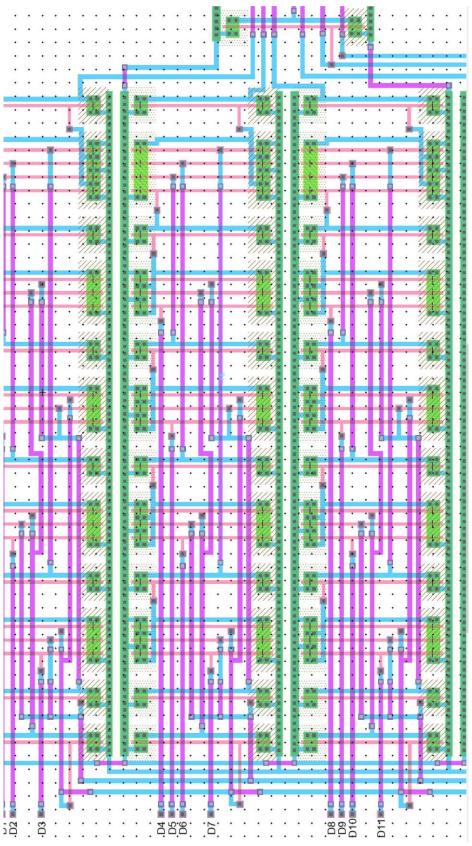



Figure 19.2: Layout Design of a 16-to-1 Multiplexer Zoomed (Landscape)

# 😟 Electric Messages

\_\_\_\_\_6\_\_\_\_\_6\_\_\_\_\_6\_\_\_\_\_6\_\_\_\_\_ Running DRC with area bit on, extension bit on, Mosis bit Checking again hierarchy .... (0.016 secs) Found 368 networks Checking cell '16-to-1-Mux{lay}' No errors/warnings found 0 errors and 0 warnings found (took 4.329 secs) ==========7=====7================ Checking Wells and Substrates in '16-to-1-Mux:16-to-1-Mux{lay}' ... Geometry collection found 940 well pieces, took 0.101 secs Geometry analysis used 4 threads and took 0.022 secs NetValues propagation took 0.0 secs Checking short circuits in 10 well contacts Additional analysis took 0.0 secs No Well errors found (took 0.123 secs) Figure 20: Design Rule Check (DRC) and Well Check of a 16-to-1 Multiplexer Layout Design

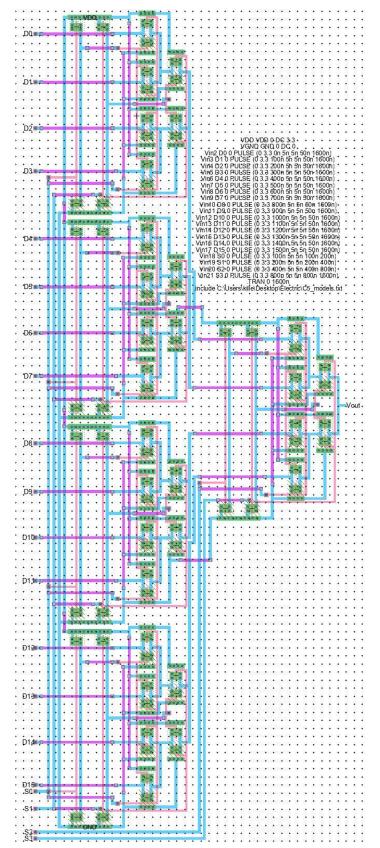



Figure 21.0: Layout Design of a Transmission Gate 16-to-1 Multiplexer

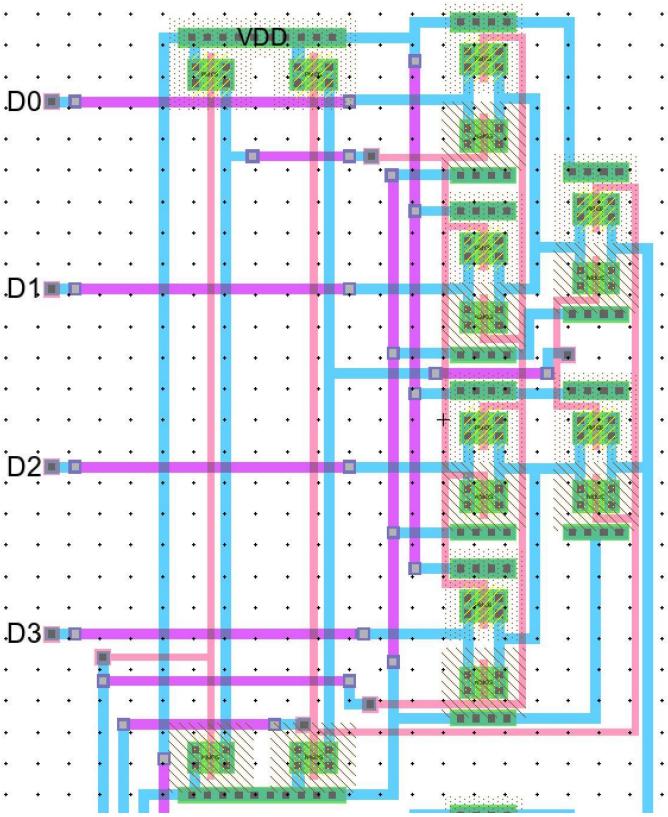



Figure 21.1: Layout Design of a Transmission Gate 16-to-1 Multiplexer Zoomed (Top)

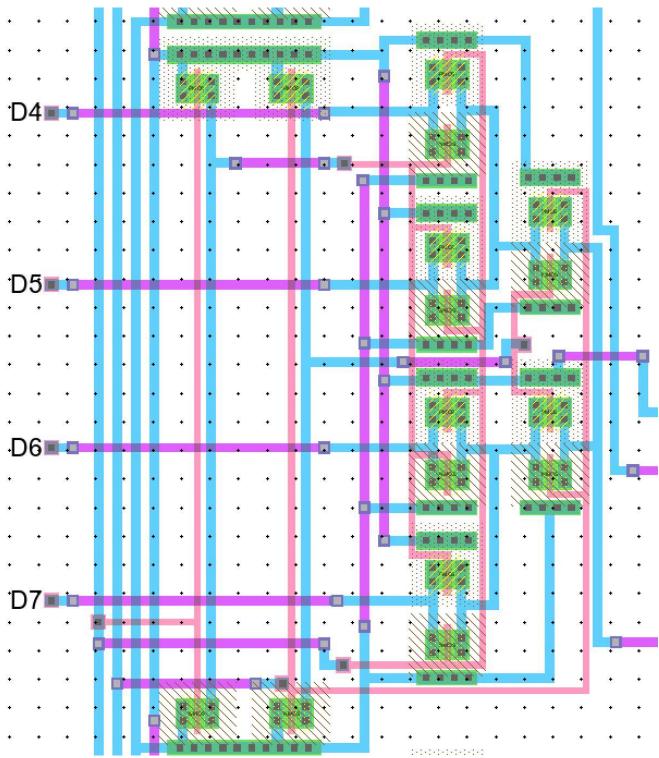
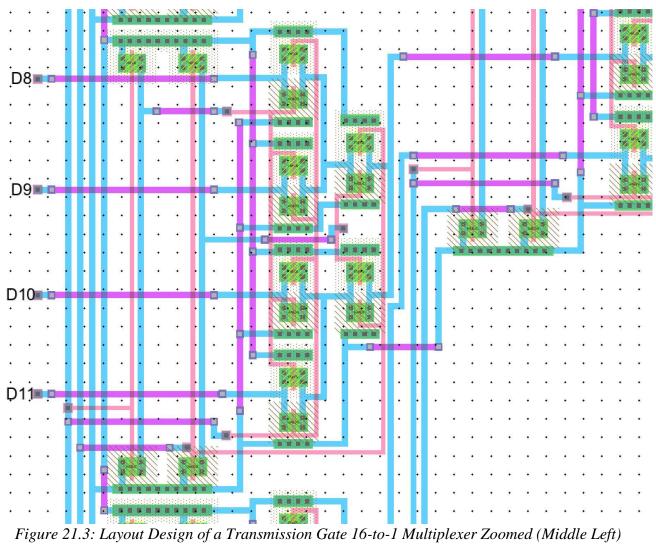
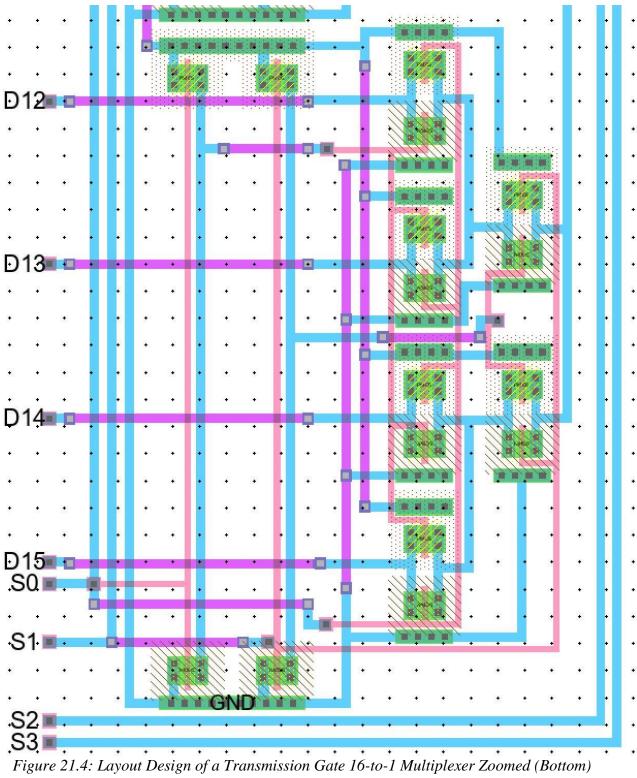
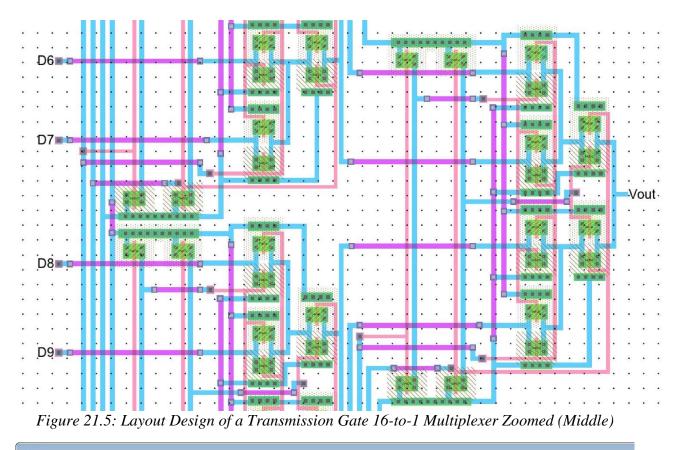






Figure 21.2: Layout Design of a Transmission Gate 16-to-1 Multiplexer Zoomed (Middle Left)







### Electric Messages

Figure 22: Design Rule Check (DRC) and Well Check of a Transmission Gate 16-to-1 Multiplexer Layout Design

## Section 5: IRSIM Simulations:

After creating the schematic and layout design of the 16-to-1 Multiplexer, waveforms were created using IRSIM. Theses waveforms were created by configuring the inputs, D0-D15, and S0-S3, so that it could test certain computations. The computations that it tested are the same between the schematic and layout. When setting in values for the inputs, the output would automatically update based on the inputs. We were able to verify the waveforms obtained from IRSIM were correct by matching it with the truth table on Table 1.

# Section 5.1: Schematic:

For the schematic, we tested both conventional 16-to-1 Multiplexer, and Transmission Gates 16-to-1 Multiplexer. We could confirm that it works by viewing the selectors and counting the peaks for the one that's selected and comparing it with the output.

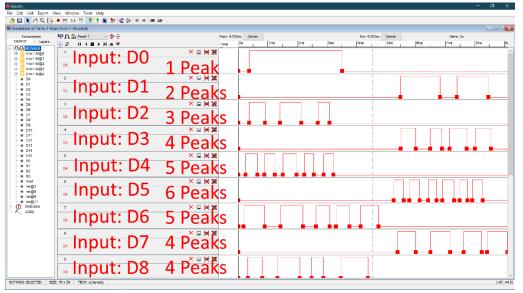



Figure 23.1: IRSIM Waveforms of Schematic Design of a Conventional 16-to-1 Multiplexer

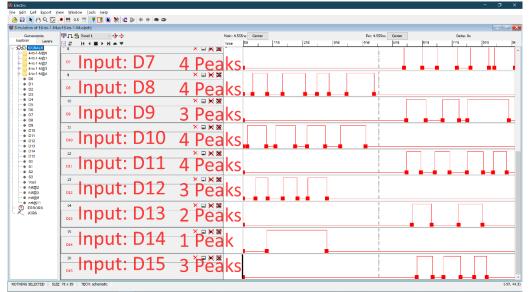



Figure 23.2: IRSIM Waveforms of Schematic Design of a Conventional 16-to-1 Multiplexer

| 😟 Electric                                           |                                                      |                       |                                                                                         | – 0 ×                                          |
|------------------------------------------------------|------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|
| File Edit Cell Export Vi                             | iew Window Tools Help<br>• # 0.5 🗮 👎 🔁 🖹 📽 📽 🕼 + 🔿 👄 |                       | 0                                                                                       | 1                                              |
| Simulation of 16-to-1-Mu                             | nc16-to-1-Mux{sch}                                   |                       | •                                                                                       | - 8 ×                                          |
| Components<br>Explorer Layers                        | 罕几品 Panel 17                                         | Main: 5.001ns<br>Time | Center         Ext: 5.001           Cis         1ns         2ns         3ns         4ns | ns Center Delta: 0s<br>5ns  6ns  7ns  8ns  9ns |
| 4-to-1-M@0<br>4-to-1-M@1<br>4-to-1-M@2<br>4-to-1-M@3 | <sup>17</sup> Input: S3                              | × ⊑ ¥ ¥               | 0                                                                                       | 0                                              |
|                                                      | <sup>™</sup> Input: S2                               | × 🗆 💥 🔀               | 0                                                                                       | 0                                              |
|                                                      | <sup>19</sup> Input: S1                              | ×口减援                  | 0                                                                                       | 0                                              |
| D9<br>D10<br>D11<br>D12<br>D13                       | <sup>®</sup> Input: SO                               | × 🗆 💥 💥               | 0                                                                                       | 1                                              |
|                                                      | <sup>a</sup> Output: Vout                            | × • × × × × × 3 Peaks | Delay                                                                                   | Delay                                          |
|                                                      |                                                      | 1 Peak                |                                                                                         |                                                |
| LERRORS<br>JOBS                                      | <sup>a</sup> Input: D1                               | 2 Peaks               |                                                                                         |                                                |
|                                                      |                                                      |                       |                                                                                         |                                                |
|                                                      |                                                      |                       |                                                                                         |                                                |
| NOTHING SELECTED SIZE                                | : 78 x 59 TECH: schematic                            |                       |                                                                                         | (-104, 46)                                     |

Figure 23.3: IRSIM Waveforms of Schematic Design of a Conventional 16-to-1 Multiplexer (Selector at 0 and 1)

| 😃 Electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                       |                                                                                       | - 0 X                                                    |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|
| Eile Edit Cell Export V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | jew Window Iools Help<br>🧈 拱 0.5 👯 👎 🍞 🐚 💸 📽 😭 🐗 🗭 👄 |                       | 2                                                                                     |                                                          |  |  |  |
| Simulation of 16-6-1-Muricho-1 Muricho-1 |                                                      |                       |                                                                                       |                                                          |  |  |  |
| Components<br>Explorer Layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ლ几급 Panel 1 ∨ ग्रेंग <del>*</del><br>ﷺ ८ N           | Main: 5.033ns<br>Time | Center         Ext: 5.03           Ds         1ns         2ns         3ns         4ns | 3ns Center Delta: 0s<br> 5ns   6ns   7ns   8ns   9ns   1 |  |  |  |
| 4-to-1-M@0<br>4-to-1-M@1<br>4-to-1-M@2<br>4-to-1-M@3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>1</sup> Input: S3                               | × 🗆 💥 💥               | 0                                                                                     | 0                                                        |  |  |  |
| Image: Horst-Naligital       Image: Horst-Naligital    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>2</sup> Input: S2                               | × 🗆 💥 🐹               | 0                                                                                     | 0                                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>3</sup> Input: S1                               | × u jų jų             | 1                                                                                     | 1                                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>•</sup> Input: SO                               | × 🗆 💥 💥               | 0                                                                                     | 1                                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cutput: Vou                                          | t 7 Peaks             | Delay                                                                                 | Delay                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>•</sup> Input: D2                               | 3 Peaks               |                                                                                       |                                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>°</sup> Input: D3                               | 4 Peaks               |                                                                                       |                                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                       |                                                                                       |                                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                       |                                                                                       |                                                          |  |  |  |
| VOTHING SELECTED         SIZE: 78 x 59         TECH: sobemaic         (-99.5, 46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                       |                                                                                       |                                                          |  |  |  |

Figure 23.4: IRSIM Waveforms of Schematic Design of a Conventional 16-to-1 Multiplexer (Selector at 2 and 3)

| 😃 Electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                            |                               | - 0 ×                                                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------|-------------------------------|--------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | iew Window Tools Help<br>🏓 👯 0.5 🗮 👎 🔁 🐚 💸 📽 😭 🔶 👄 👄 |                            | - 4                           | 5                                                      |  |
| Simulation of 16-to-1-Mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ux16-to-1-Mux{sch}                                   |                            |                               | - 8 🗙                                                  |  |
| Components<br>Explorer Layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 罕 ∏ 🔠 Panel 1 → ग्रैंग 💠<br>ⅲ 🖉 । स र 🔳 ト म 🔺 🗢      | Main: 4.894ns G<br>Time Os | enter   1ns   2ns   3ns   4ns | Ext: 4.894ns Center Delta: 0s<br>5 5ns 6ns 7ns 8ns 9ns |  |
| ⇒         District           Friend         4-0-144(g)           Friend         6-0-144(g)           Friend         0-12           -         0-12           -         0-12           -         0-12           -         0-10           -         0-11           -         0-11           -         0-11           -         0-15           -         0-15           -         0-15           -         0-15           -         0-15           -         0-16           -         0-16           -         0-16           -         0-16           -         0-16           -         0-16           -         0-16           -         0-16 | <sup>⊥</sup> Input: S3                               | × □ ¥ ¥                    | 0                             | 0                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>2</sup> Input: S2                               | × □ ¥ ₩                    | 1                             | 1                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>3</sup> Input: S1                               | × □ ) x ( ) x              | 0                             | 0                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>•</sup> Input: SO                               | × □                        | 0                             | 1                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Output: Voi                                          | Jt × ■ × × × × × L         | Delay                         | Delay                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ¦¶Input: D4                                          | 5 Peaks                    |                               |                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>*</sup> Input: D5                               | 6 Peaks                    |                               |                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                            |                               |                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                            |                               |                                                        |  |
| NOTHING SELECTED SIZE: 78 x 59 TECH: sohematic (495.5, 46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                            |                               |                                                        |  |

Figure 23.5: IRSIM Waveforms of Schematic Design of a Conventional 16-to-1 Multiplexer (Selector at 4 and 5)

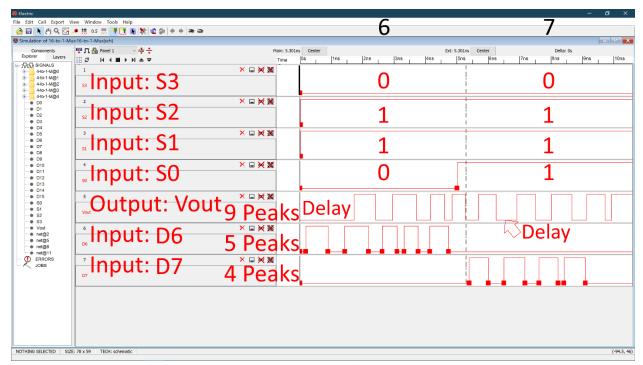



Figure 23.6: IRSIM Waveforms of Schematic Design of a Conventional 16-to-1 Multiplexer (Selector at 6 and 7)

| Electric File Edit Cell Export V                     | iew Window Tools Help                                                                      |           | 0                      | - @ ×                                                                                                                            |
|------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------|------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 🚵 🗟 📐 🖑 Q 🐼 .                                        | 🍠 拱 0.5 拱 📑 📑 🐚 💸 🗳 🕼 👄 🔿                                                                  |           | ð                      |                                                                                                                                  |
|                                                      |                                                                                            |           |                        | - 7 🗙                                                                                                                            |
| Explorer Layers                                      | ₩µ∏aapanel1 ∨ŵr∳<br>∰ 2 H I∎ F H ≜ マ                                                       | Time 0s   | Center 1ns 2ns 3ns 4ns | Ext:         S.213ns         Center         Delta: 0s           5na         6na         7ns         8na         9ns         10ns |
| 4-to-1-M@0<br>4-to-1-M@1<br>4-to-1-M@2<br>4-to-1-M@3 | <sup>1</sup> Input: S3                                                                     | × □ ½ ¥   | 1                      | 1                                                                                                                                |
|                                                      | <sup>2</sup> Input: S2                                                                     | × □ ¥ ₩   | 0                      | 0                                                                                                                                |
| D5<br>D6<br>D7<br>D8                                 | <sup>3</sup> Input: S1                                                                     | × 🗆 )ví 💥 | 0                      | 0                                                                                                                                |
| • D7                                                 | Input: SO                                                                                  | × □ ¥ 鯊   | 0                      | 1                                                                                                                                |
| D15<br>S0<br>S1<br>S2                                | Output: Vou                                                                                | t 7 Peaks | Delay                  |                                                                                                                                  |
|                                                      | <sup>°</sup> Input: D8                                                                     | × □ 涎 溅   |                        | <b>⊳Delay</b>                                                                                                                    |
|                                                      | <sup>i</sup> Input: D9                                                                     | 3 Peaks   |                        |                                                                                                                                  |
|                                                      |                                                                                            |           |                        |                                                                                                                                  |
|                                                      |                                                                                            |           |                        |                                                                                                                                  |
| NOTHING SELECTED SIZE                                | <pre>End Cell Expert View Window Tods Holp 8 _ 9 _ 9 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0</pre> |           |                        |                                                                                                                                  |

Figure 23.7: IRSIM Waveforms of Schematic Design of a Conventional 16-to-1 Multiplexer (Selector at 8 and 9)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                |                                 | 10                           | - • ×<br>11                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------|------------------------------|-------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • # 0.5 # • • • • • • • •                                                      |                                 | 10                           |                                                                   |
| Components<br>Explorer Layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ₩₩₩₩₩₩₩₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩ | Main: 5.163ns<br>Time           | Center<br>Ds 1ns 2ns 3ns 4ns | Ext: 5.163ns Center Delta: 0s 500 500 500 500 500 500 500 500 500 |
| 4-to-1-M@0<br>4-to-1-M@1<br>4-to-1-M@2<br>4-to-1-M@3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>™</sup> Input: S3                                                         | × 🗆 💥 🐹                         | . 1                          | 1                                                                 |
| File       Edit       Cell       Export       View         Image: Simulation of 16-16-14.uc(3)       Image: Simulation of 16-16-14.uc(3)       Image: Simulation of 16-14.uc(3)         Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)         Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)         Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)         Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)         Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)         Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)         Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)         Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)         Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)         Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3)         Image: Simulation of 16-14.uc(3)       Image: Simulation of 16-14.uc(3) <t< td=""><td>° Input: S2</td><td>× • ¥ ¥</td><td>0</td><td>0</td></t<> | ° Input: S2                                                                    | × • ¥ ¥                         | 0                            | 0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | input: S1                                                                      | × • × ×                         | 1                            | 1                                                                 |
| - • D10<br>- • D11<br>- • D12<br>- • D13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>•</sup> Input: SO                                                         | × 🗆 💓 💥                         | 0                            | 1                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>5</sup> Output: Vou                                                       | t <sup>× • × ×</sup><br>8 Peaks | Delay                        | Delay                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>•</sup> Input: D10                                                        | 4 Peaks                         |                              |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>7</sup> Input: D11                                                        | 4 Peaks                         |                              |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                |                                 |                              |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                |                                 |                              |                                                                   |
| NOTHING SELECTED SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78 x 59 TECH: schematic                                                        |                                 |                              | (-75.5, 41)                                                       |

Figure 23.8: IRSIM Waveforms of Schematic Design of a Conventional 16-to-1 Multiplexer (Selector at 10 and 11)

| 😃 Electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                      |                      | – 0 ×                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|----------------------|-----------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                      | 12                   | 13                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • 恭 0.5 🗮 👎 🖪 🐧 比 📽 📽 🗣 🔿 🍣               |                      | 12                   |                                                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                      |                      | - 🕫 🗙                                               |
| Explorer Layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ♀ □ 冊 Panel 1 → ♪ ↓ ▲ マ                   | Main: 4.762r<br>Time | ns Center Ext: 4.762 | ns Center Delta: 0s<br> 5ns   6ns   7ns   8ns   9ns |
| E ALA SIGNALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                      |                      |                                                     |
| File         Edit         Cell         Export         View           Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16           Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16           Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16           Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16           Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16           Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16           Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16           Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16           Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16           Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16           Image: Simulation of 16-to-14/unc16         Image: Simulation of 16-to-14/unc16         Image: | Input: S3                                 |                      | 1                    | 1                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>²</sup> Input: S2                    | *                    | 1                    | 1                                                   |
| D5<br>D6<br>D7<br>D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>³</sup> Input: S1 × ∞ ×              | *                    | 0                    | 0                                                   |
| • D10<br>• D11<br>• D12<br>• D13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>∗</sup> ∎×                           | *                    | 0                    | 1                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . Output: Vout <sub>5</sub> Pe            | *<br>aks             | Delay                | Delay                                               |
| S0     S1     S2     S3     Vout     enet@2     enet@2     enet@3     enet@3     enet@1     enet@1      fnet@1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Input: D12 3 Pe                           | aks                  |                      |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>*</sup> Input: D13 2 <sup>*</sup> Pe | aks                  |                      |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                      |                      |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78 x 59 TECH: schematic                   |                      |                      | (-104, 46)                                          |
| NOTING OLLECTED SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170 X 22 TECH VERSING                     |                      |                      | (*107, 10)                                          |

Figure 23.9: IRSIM Waveforms of Schematic Design of a Conventional 16-to-1 Multiplexer (Selector at 12 and 13)

| 😲 Electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                       |                    |             | - 🗆 X    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------|--------------------|-------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                       | 14                 |             | 15       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |                       | ± 1                |             | <u>_</u> |
| File       Edit       Cell       Export       Yiew       W         Image: Simulation of 16-to-1440ct Edit         Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit         Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit         Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit         Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit         Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit         Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit         Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit       Image: Simulation of 16-to-1440ct Edit       Image: Simulatio Edit         Image: Simula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>弾れ品</b> Panel 1   √ ∲ ∻<br>…<br>ジ ダ N イ ■ ▶ N ▲ ▼ | Main: 4.819ns<br>Time | Center Ins 2ns 3ns |             |          |
| File Edit Cell Expot View V         Image: State of the state of                            | <sup>1</sup> Input: S3                               | × u ¥ ¥               | 1                  |             | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>²</sup> Input: S2                               | × 🖬 💥 💥               | 1                  |             | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Input: S1                                            | × u ¥ ¥               | 1                  |             | 1        |
| - • D10<br>- • D11<br>- • D12<br>- • D13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . Input: SO                                          | × u x X               | 0                  |             | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>s</sup> Output: Vout                            | 4 Peaks               | Delay              |             | Delay    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $^{\circ}$ loop to $\mathbf{D}$                      | 🗙 🖬 📈 🕱               |                    |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>'</sup> Input: D15                              | 3 Peaks               |                    |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                       |                    |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                       |                    |             |          |
| Image: Second and Second |                                                      |                       |                    | (-88.5, 36) |          |

Figure 23.10: IRSIM Waveforms of Schematic Design of a Conventional 16-to-1 Multiplexer (Selector at 14 and 15)

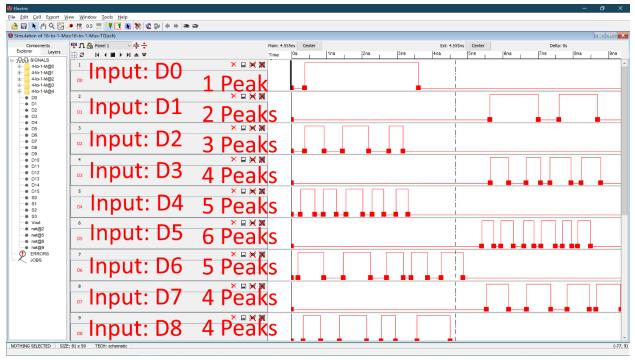



Figure 24.1: IRSIM Waveforms of Schematic Design of a Transmission Gate 16-to-1 Multiplexer

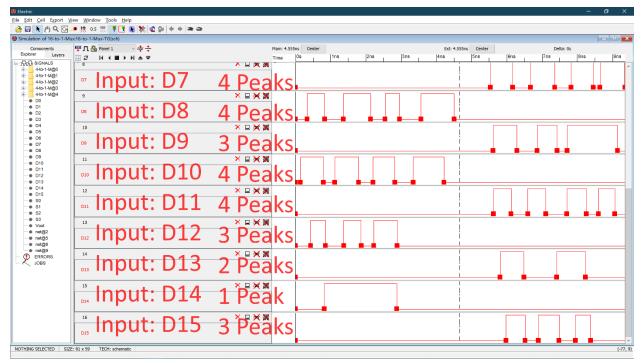



Figure 24.2: IRSIM Waveforms of Schematic Design of a Transmission Gate 16-to-1 Multiplexer

| 🙂 Electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |                                         |                                                                                        | – 61 ×                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ew Window Iools Help<br>● 拱 0.5 読 👎 👎 🔥 💸 📽 😭 🔶 👄 👄 |                                         | 0                                                                                      | 1                                              |
| Simulation of 16-to-1-Mux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x:16-to-1-Mux-TG(sch)                               |                                         | 0                                                                                      | - # ×                                          |
| Explorer Layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ლ几급 Panel 17 ∨ ‡ *<br>ⅲ ८ । । । ■ ► н ▲ マ           | Main: 5.001ns<br>Time                   | Center         Ext: 5.001           0s         1ns         2ns         3ns         4ns | ns Center Delta: 0s<br>5ns  6ns  7ns  8ns  9ns |
| Bile     Edit     Call     Export     Verv     Verv       Simulation     Concorrents     Layers     Export     II       Export     Export     Layers     II       Image: Simulation     Ado:1AMQ2     II     II       Image: Simulation     Ado:1AMQ2     III     III       Image: Simulation     III     III     IIII       Image: Simulation     IIII     IIII     IIII       Image: Simulation     IIII     IIII     IIII       Image: Simulation     IIIII     IIII     IIIII       Image: Simulation     IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | <sup>"</sup> Input: S3                              | × • ¥                                   | 0                                                                                      | 0                                              |
| © D0<br>© D1<br>© D2<br>© D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>™</sup> Input: S2                              | × 🗆 💥 💥                                 | 0                                                                                      | 0                                              |
| © D5<br>© D6<br>© D7<br>© D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>19</sup> Input: S1                             | × u x                                   | 0                                                                                      | 0                                              |
| + D10<br>+ D11<br>++ D12<br>++ D13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>®</sup> Input: SO                              | × 🗆 💥 💥                                 | 0                                                                                      | 1                                              |
| D15<br>\$0<br>\$1<br>\$2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cutput: Vout                                        | × • × × × × × × × × × × × × × × × × × × | Delay                                                                                  | Delay                                          |
| ••• Vout<br>••• net@2<br>••• net@5<br>••• net@8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>"</sup> Input: D0                              | 1 Peak                                  |                                                                                        |                                                |
| • net@9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>aa</sup> Input: D1                             | 2 Peaks                                 |                                                                                        |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |                                         |                                                                                        |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |                                         |                                                                                        |                                                |
| NOTHING SELECTED SIZE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t : 81 x 59 TECH: schematic                         |                                         |                                                                                        | (-77, 9)                                       |

Figure 24.3: IRSIM Waveforms of Schematic Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 0 and 1)

| 😃 Electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                |                                                                                       | – 6 ×                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                | 2                                                                                     | 3                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                | Ζ                                                                                     | J – 🖻 💌                                      |
| Bile     Edit     Call     Earort     Yew     Yew       Image: State of the | Ლ几冊 Panel 1 ∨ № ☆<br>## ८ N N N N A ♥ | Main: 5.033ns<br>Time 01       | Center         Ext: 5.033           s         1ns         2ns         3ns         4ns | ns Center Delta: 0s<br>5ns 6ns 7ns 8ns 9ns 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>•</sup> Input: S3                | × • ¥ ¥                        | 0                                                                                     | 0                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>2</sup> Input: S2                | × 🗆 💥 🐹                        | 0                                                                                     | 0                                            |
| © D5<br>© D6<br>© D7<br>© D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | input: S1                             | × 🗆 💓 💥                        | 1                                                                                     | 1                                            |
| + D10<br>+ D11<br>+ D12<br>+ D13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . Input: SO                           | × □ ¥ X                        | 0                                                                                     | 1                                            |
| D15     S0     S1     S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Output: Vou                           | t <sup>× •</sup> **<br>7 Peaks | Delay                                                                                 | Delay                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>1</sup> Input: D2                | 3 Peaks                        |                                                                                       |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>'</sup> Input: D3                | 4 Peaks                        |                                                                                       |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                |                                                                                       |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                |                                                                                       |                                              |
| NOTHING SELECTED   SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E: 81 x 59 TECH: schematic            |                                |                                                                                       | (-77, 9)                                     |

Figure 24.4: IRSIM Waveforms of Schematic Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 2 and 3)

| U Electric<br>Eile Edit Cell Export Vi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iew Window Tools Help                        |                                         | -    | - 0 ×                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • # 0.5 🗮 👎 🖪 🐚 💸 🗳 🕼 🔶 👄 🛥                  | •                                       | - 4  | 5                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                         |      | - 8 🗙                                                                                                                   |
| Explorer Layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ლ∏ 🛱 Panel 1 ∨ ग्रैंग 💠<br>ﷺ Ø H ◀ ■ ► H ▲ マ | Main: 4.894ns Cer<br>Time Os            |      | Ext: 4.894ns         Center         Delta: 0s           4ns         5ns         6ns         7ns         8ns         9ns |
| Bit         Edit         Cell         Export         View         Yiew           Simulation of 16-0-1-MuchCeT         Export         Layes         If         < | <sup>1</sup> Input: S3                       | × • • • • • • •                         | 0    | 0                                                                                                                       |
| © D0<br>© D1<br>© D2<br>© D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>²</sup> Input: S2                       | × □ ¥ ¥                                 | 1    | 1                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>3</sup> Input: S1                       | × 🗆 )x( ))(                             | 0    | 0                                                                                                                       |
| + D10<br>+ D11<br>+ D12<br>+ D13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>•</sup> Input: SO                       | × • • • • • • • • • • • • • • • • • • • | 0    | 1                                                                                                                       |
| © D15<br>© S0<br>© S1<br>© S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Output: Vo                                   | ut 11 Peaks D                           | elay | Delay                                                                                                                   |
| Vout<br>net@2<br>net@5<br>net@8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ¦input: D4                                   | 5 Peaks                                 |      |                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>i</sup> Input: D5                       | 6 Peaks                                 |      |                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                         |      |                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                         |      |                                                                                                                         |
| NOTHING SELECTED SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : 81 x 59 TECH: schematic                    |                                         |      | (-77, 9)                                                                                                                |

Figure 24.5: IRSIM Waveforms of Schematic Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 4 and 5)

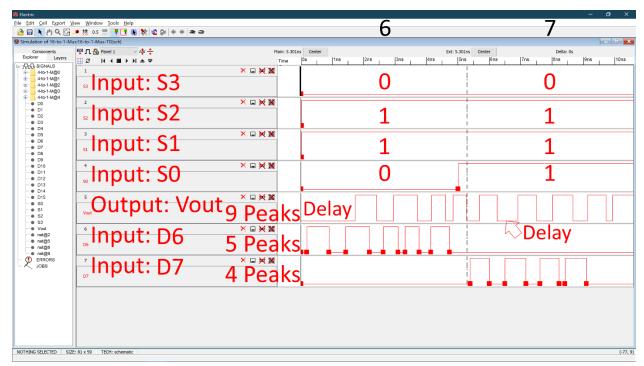



Figure 24.6: IRSIM Waveforms of Schematic Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 6 and 7)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                       | 8                           | - ° ×                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ● 井 0.5 売 👎 📑 🖹 🧏 📽 🗳 🕼 🔶 👄 👄   |                       | 0                           |                                                                                                                          |
| Components<br>Explorer Layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ₩ C H A B Panel 1 ↓ A ↓ A ↓ A ↓ | Main: 5.213ns<br>Time | Center<br>s 1ns 2ns 3ns 4ns | Ext: 5.213ns         Center         Delta: 0s           6na         6ns         7ns         8ns         9ns         10ns |
| 4-to-1-M@0<br>4-to-1-M@1<br>4-to-1-M@2<br>4-to-1-M@2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>1</sup> Input: S3          | × u ¥ ¥               | 1                           | 1                                                                                                                        |
| Bile         Edit         Call         Export         Verv         I           Image: Simulation of the construction of the constru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>²</sup> Input: S2          | × • ¥ ¥               | 0                           | 0                                                                                                                        |
| D5<br>D6<br>D7<br>D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>3</sup> Input: S1          | × 🗆 💓 💥               | 0                           | 0                                                                                                                        |
| + D10<br>+ D11<br>++ D12<br>++ D13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Input: SO                       | × 🗆 💥 💥               | 0                           | 1                                                                                                                        |
| © D15<br>© S0<br>© S1<br>© S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>*</sup> Output: Vout       | × □ × ×<br>7 Peaks    | Delay                       |                                                                                                                          |
| - 0 D4<br>- 0 D5<br>- 0 D5<br>- 0 D7<br>- 0 D9<br>- 0 D10<br>- 0 D11<br>- 0 D13<br>- 0 D13<br>- 0 D15<br>- 8 S1<br>- 8 S1<br>- 8 S1<br>- 8 S1<br>- 9 H15<br>- 9 | I Donute DO                     | 4 Peaks               |                             | Delay                                                                                                                    |
| ERRORS<br>JOBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | 3 Peaks               |                             |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                       |                             |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                       |                             |                                                                                                                          |
| NOTHING SELECTED SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E: 81 x 59 TECH: schematic      |                       |                             | (-77, 9)                                                                                                                 |

Figure 24.7: IRSIM Waveforms of Schematic Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 8 and 9)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iew Window Iools Help<br>• 拱 0.5 ☴ 👎 🕇 💦 💸 🕸 🕼 🔶 👄 👄 |                                 | 10                 | - • ×                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nc16-to-1-Mux-TG(sch)                                | Main: 5.163ns                   | Center             | Ext: 5.163ns Center Delta: 0s                                                                                           |
| Explorer Layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | Time                            | 0s 1ns 2ns 3ns 4ns | Ex. 5.10/iii         Center         Dens. 05           5ns         6ns         7ns         8ns         9ns         10ns |
| 4-to-1-M@0<br>4-to-1-M@1<br>4-to-1-M@2<br>4-to-1-M@2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>1</sup> Input: S3                               | × 🖬 💥 💥                         | 1                  | 1                                                                                                                       |
| Elle         Edit         Cell         Export         Yjew           Image: Standard of the standard of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>2</sup> Input: S2                               | × 🖬 💓 💥                         | 0                  | 0                                                                                                                       |
| © D5<br>© D6<br>© D7<br>© D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>3</sup> Input: S1                               | × u × x                         | 1                  | 1                                                                                                                       |
| + D10<br>+ D11<br>+ D12<br>+ D13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . Input: SO                                          | X II X X                        | 0                  | 1                                                                                                                       |
| - © 05<br>- © 010<br>- © 010<br>- © 011<br>- © 012<br>- © 014<br>- © | Output: Vou                                          | t <sup>× • × ×</sup><br>8 Peaks | Delay              | Delay                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ໍຼີ Input: D10                                       | 4 Peaks                         |                    |                                                                                                                         |
| - (I) ERRORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Input: D11                                           | 4 Peaks                         |                    |                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                 |                    |                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                 |                    |                                                                                                                         |
| NOTHING SELECTED SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : 81 x 59 TECH: schematic                            |                                 |                    | (-77, 9)                                                                                                                |

Figure 24.8: IRSIM Waveforms of Schematic Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 10 and 11)

| 😃 Electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                                                | – 0 ×               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | 12                                             | 13                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≠ 恭 0.5 票 👎 🗄 🖹 📽 📽 🛊 🔶 👄 👄        | 12                                             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                                                | - 7 🗙               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | ns Center Ext: 4.762<br>Os  1ns  2ns  3ns  4ns |                     |
| E THE SIGNALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | Os Ins 2ns 3ns 4ns                             | 5ns 6ns 7ns 8ns 9ns |
| Bit         Cell         Export         Yew           Simulation of 16-0-1-Murt 16         Commonts         Export                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s Input: S3                        | 1                                              | 1                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                                                |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>2</sup> Input: S2             | 1                                              | 1                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>³</sup> Input: S1 × ∞ × ∞ × ∞ | 0                                              | 0                   |
| D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sinpacior                          |                                                |                     |
| © D10<br>© D11<br>© D12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>1</sup> Input: S0 × □ × ∞ × ∞ | 0                                              | 1                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Output: Vout Peaks                 | Delay                                          | Delay               |
| - • 012<br>- • 013<br>- • 014<br>- • 015<br>- • 05<br>- | Input: D12 3 Peaks                 |                                                |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | input: D13 2 Peaks                 |                                                |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                                                |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                                                |                     |
| O 3     O 4     O 5     O 5     O 5     O 5     O 7     O 5     O 7     O 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                                                |                     |
| NOTHING SELECTED SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E: 81 x 59 TECH: schematic         |                                                | (-77, 9)            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                                |                     |

Figure 24.9: IRSIM Waveforms of Schematic Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 12 and 13)

| 🙂 Electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |               |                |            | – @ ×               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------|----------------|------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |               | 14             |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ● 拱 0.5 號 <mark>■ 1</mark> 🔥 🗞 🕸 😩 🔶 👄 👄            |               | T <del></del>  | •          | J                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICT0-to-I-Mux-IG(SCN)<br>약 		 유규 즮 Panel 1 ···· 心 亽 | Main: 4.819ns | Center         | Ext: 4.819 |                     |
| Bile         Edit         Cell         Export         View         Yiew           Simulation of 16-0-1-Mucc1-B         File         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     | Time          | Ds Ins Ins Ins | 3ns  4ns   | 5ns 6ns 7ns 8ns 9ns |
| ie- 4-to-1-M@0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                   | × 🗆 💓 💥       |                |            |                     |
| 4-to-1-M@2<br>4-to-1-M@3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Input: S3                                           |               | _ 1            |            | 1                   |
| D0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                   | × 🗆 💥 💥       |                |            |                     |
| + D2<br>+ D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Input: S2                                           |               | 1              |            | 1                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>3</sup> Input: S1                              | × 🗆 💓 💥       | 1              |            | 1                   |
| D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |               | <b>_</b>       |            | ±                   |
| - + D11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>1</sup> Input: SO                              | × 🗆 💥 💥       | 0              |            | 1                   |
| D13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · ·                                                 |               |                |            | <u> </u>            |
| \$ \$0<br>\$ \$1<br>\$ \$2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cutput: Vou                                         | t 4 Peaks     | Delay          |            | Delay               |
| 05     011     012     013     014     015     05     015     05     05     05     05     05     05     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 | <sup>•</sup> Input: D14                             | 1 Peak        |                |            |                     |
| - () ERRORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>7</sup> Input: D15                             | 3 Peaks       |                |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |               |                |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |               |                |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |               |                |            |                     |
| NOTHING SELECTED SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 81 x 59 TECH: schematic                           |               |                |            | (-77, 9)            |

Figure 24.10: IRSIM Waveforms of Schematic Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 14 and 15)

## Section 5.2: Layout:

For the layout, we tested both conventional 16-to-1 Multiplexer, and Transmission Gates 16-to-1 Multiplexer. We could confirm that it works by viewing the selectors and counting the peaks for the one that's selected and comparing it with the output.

| Electric<br>e Edit Cell Export V                   | /iew Window Tools Help                                 |            |            |        |          |     |     |           | - 0      |    |
|----------------------------------------------------|--------------------------------------------------------|------------|------------|--------|----------|-----|-----|-----------|----------|----|
| 👌 🗟 📘 🤲 🔍 🔂                                        |                                                        | a          |            |        |          |     |     |           |          |    |
| Simulation of 16-to-1-M                            |                                                        |            |            |        |          |     |     |           | - 1      | 9  |
| Components                                         | 罕 🞵 🛗 Panel 1 🛛 🗸 🤹                                    | Main: 4.55 | 5ns Center |        | Ext: 4.5 |     |     | Delta: 0s |          |    |
| Explorer Layers                                    | ≝₽ н∢∎⊁⊁≜⊽                                             | Time       | Os Ins     | 2ns 3n | s 4ns    | 5ns | 6ns | 7ns       | 8ns      |    |
| - + D0<br>- + D1                                   | 📩 Input: D0                                            | ×□×罴       |            |        |          |     |     |           |          |    |
| • D2                                               | niput. D0                                              | 1 Peak     |            |        |          |     |     |           |          |    |
| D4                                                 |                                                        |            |            |        | <b></b>  |     |     |           |          | -  |
|                                                    | <sup>2</sup> Input: D1                                 |            |            |        |          |     |     |           |          |    |
|                                                    | IIIpul. DI                                             | 2 Peaks    | L          |        |          |     | 1   | 1         | 1        |    |
|                                                    | 3                                                      |            |            |        |          |     | -   |           | _        | -  |
| • D11                                              | Input: D2                                              |            |            |        |          |     |     |           |          |    |
| D13                                                | <sup>™</sup> mput. DZ                                  | 3 Peaks    |            |        |          |     |     |           |          |    |
|                                                    | 4                                                      | × 🗆 💥 💥    | 1          |        |          |     |     |           |          |    |
|                                                    | Input: D3                                              | 1 Doole    |            |        |          |     |     |           |          |    |
|                                                    | " mpat. BS                                             | 4 Peaks    |            |        |          |     |     | -• •-     | <u> </u> | _  |
|                                                    | 5                                                      | 🗙 🖂 🗡      |            |        | ]        |     |     |           |          |    |
| - • net@6297                                       | Input: D4                                              | 5 Peaks    |            |        |          |     |     |           |          |    |
|                                                    |                                                        |            | <u>)</u>   |        |          |     |     |           |          | _  |
| net@6310      net@6314                             | - Innut DE                                             | × • × ×    |            |        |          |     |     |           |          |    |
| <ul> <li>net@6315</li> <li>net@6333</li> </ul>     | Input: D5                                              | 6 Peaks    |            |        |          |     |     |           |          |    |
| • net@6339                                         |                                                        |            |            |        |          |     |     |           | -        | -  |
| • net@6349                                         | <sup>7</sup> Input: D6                                 | E Doole    |            |        |          |     |     |           |          |    |
| net@6369                                           | 🛛 🖻 IIIput. Do                                         | J PEAKS    |            |        | 1 1 1    |     |     |           |          |    |
| <ul> <li>e net@6383</li> <li>e net@6385</li> </ul> | 8                                                      | × 🖬 💥 💥    |            |        |          |     |     |           |          | -  |
| <ul> <li>net@6395</li> <li>net@6404</li> </ul>     | Input: D7                                              | 4 Peaks    |            |        |          |     |     |           |          |    |
|                                                    | mpat. D7                                               | TICUNS     |            |        |          |     |     |           |          |    |
| • net@6429                                         | ° • • • • •                                            | × □ × ¥    |            |        |          |     |     |           |          | _  |
| - • net@6566                                       | Input: D8                                              | 4 Peaks    |            |        |          |     |     |           |          |    |
| • net@6576 🧠                                       |                                                        |            |            |        | <u> </u> |     |     |           |          |    |
| OTHING SELECTED SIZ                                | E: 1077.5 x 519 TECH: mocmos (scale=350.0nm,foundry=MO | 515)       |            |        |          |     |     |           | (-170.5  | 5, |

Figure 25.1: IRSIM Waveforms of Layout Design of a Conventional 16-to-1 Multiplexer

| lation of 16-to-1-Mu                                                               | • 弗 0.5 荒 👎 📑 🐚 💸 🗳 🕼 🔶 👄 👄                      |                                  |                               |
|------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------|-------------------------------|
| Components                                                                         | [16-to-i-Mux(lay)<br>[ [ ] 月 高 Panel 1 · · · 心 초 | Main: 4.555ns Center E           | Ext: 4.555ns Center Delta: 0s |
| orer Layers                                                                        |                                                  | Time  0s   1ns   2ns   3ns   4ns |                               |
| SIGNALS ^                                                                          | 8                                                | べ Ⅲ 舛 渡                          |                               |
| <ul> <li>D1</li> <li>D2</li> <li>D3</li> </ul>                                     | Input: D7                                        | 4 Peaks                          |                               |
| D4     D5                                                                          | 9                                                | × • × ¥                          |                               |
| <ul> <li>D5</li> <li>D6</li> <li>D7</li> <li>D8</li> </ul>                         | Input: D8                                        | 4 Peaks                          |                               |
| <ul> <li>D9</li> <li>D10</li> </ul>                                                | 10                                               | × 🗆 💓 💥                          |                               |
| <ul> <li>D11</li> <li>D12</li> <li>D13</li> </ul>                                  | Input: D9                                        | 3 Peaks                          |                               |
| <ul> <li>D14</li> <li>D15</li> </ul>                                               | 11                                               |                                  |                               |
| <ul> <li>\$0</li> <li>\$1</li> <li>\$2</li> </ul>                                  | DID Input: D10                                   | 4 Peaks                          |                               |
| <ul> <li>S3</li> <li>Vout</li> <li>net@6293</li> </ul>                             | <sup>12</sup><br>Input: D11                      |                                  |                               |
| <ul> <li>net@6297</li> <li>net@6303</li> </ul>                                     |                                                  | 4 Peaks                          |                               |
| <ul> <li>net@6304</li> <li>net@6310</li> <li>net@6314</li> <li>net@6315</li> </ul> | <sup>13</sup> Input: D12                         | 3 Peaks                          |                               |
| net@6333                                                                           | •                                                |                                  | i                             |
| <ul> <li>net@6339</li> <li>net@6340</li> <li>net@6349</li> <li>net@6360</li> </ul> | <sup>14</sup> Input: D13                         | 2 Peaks                          |                               |
| <ul> <li>net@6369</li> <li>net@6383</li> </ul>                                     |                                                  |                                  |                               |
| <ul> <li>net@6385</li> <li>net@6395</li> <li>net@6404</li> <li>net@6413</li> </ul> | <sup>15</sup> Input: D14                         | 1 Peak                           |                               |
| <ul> <li>net@6413</li> <li>net@6420</li> <li>net@6429</li> <li>net@6436</li> </ul> | <sup>16</sup> Input: D15                         |                                  |                               |
| ● net@6566<br>● net@6576                                                           |                                                  | JEANS                            |                               |

Figure 25.2: IRSIM Waveforms of Layout Design of a Conventional 16-to-1 Multiplexer

| 🙂 Electric                                                                                                             |                                                            |                       |                                                                                        | – 61 ×                                     |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------|--------------------------------------------|
|                                                                                                                        | /iew Window Tools Help<br>ノチ 拱 0.5 読 👎 📑 🐚 💸 🗳 😭 🔶 👄 👄     |                       | 0                                                                                      | 1                                          |
| Simulation of 16-to-1-Mi                                                                                               |                                                            |                       | U                                                                                      | - 8 ×                                      |
| Components<br>Explorer Layers                                                                                          | थि प वि Panel 17 v ntr 🛧<br>∰ 8 र र र ∎ ► H A マ            | Main: 5.001ns<br>Time | Center         Ext: 5.001           Os         1ns         2ns         3ns         4ns | ns Center Delta: 0s<br>5ns 6ns 7ns 8ns 9ns |
| • D0<br>• D1<br>• D2<br>• D3                                                                                           | <sup>™</sup> Input: S3                                     | × 🖬 💓 💥               | 0                                                                                      | 0                                          |
|                                                                                                                        | <sup>™</sup> Input: S2                                     | × 🗆 💥 💥               | 0                                                                                      | 0                                          |
|                                                                                                                        | <sup>a</sup> Input: S1                                     | × □ 涎 涎               | 0                                                                                      | 0                                          |
| D14     D15     S0     S1     S2                                                                                       | <sup>20</sup> Input: SO                                    | × 🖬 💥 💥               | 0                                                                                      | 1                                          |
|                                                                                                                        | <sup>21</sup> Output: Vout                                 | × □××<br>3 Peaks      | Delay                                                                                  | Delay                                      |
| <ul> <li>netg6310</li> <li>netg6314</li> <li>netg6315</li> <li>netg6333</li> <li>netg6339</li> </ul>                   | <sup>"</sup> Input: D0                                     | 1 Peak                |                                                                                        | <br> <br> <br>                             |
| <ul> <li>net@6340</li> <li>net@6349</li> <li>net@6360</li> <li>net@6360</li> <li>net@6369</li> <li>net@6363</li> </ul> | <sup>a</sup> Input: D1                                     | 2 Peaks               |                                                                                        |                                            |
| • net@6385<br>• net@6395<br>• net@6404<br>• net@6413                                                                   |                                                            |                       |                                                                                        |                                            |
| e net@6420<br>e net@6429<br>e net@6436<br>e net@6566<br>e net@6576 v                                                   |                                                            |                       |                                                                                        |                                            |
|                                                                                                                        | E: 1077.5 x 519 TECH: mocmos (scale=350.0nm,foundry=MOSIS) |                       |                                                                                        | (-170.5, 161.5)                            |

Figure 25.3: IRSIM Waveforms of Layout Design of a Conventional 16-to-1 Multiplexer (Selector at 0 and 1)

| 😲 Electric                                                                                           |                                                            |                       |                                        | - 6 X                                                                                          |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|----------------------------------------|------------------------------------------------------------------------------------------------|
| File Edit Cell Export Vi                                                                             | iew Window Tools Help<br>• 拱 0.5 蒜 👎 👎 🐚 💸 📽 😭 🔶 👄 👄       |                       | 2                                      | 3                                                                                              |
| Simulation of 16-to-1-Mu                                                                             | nc16-to-1-Mux{lay}                                         |                       | <b>_</b>                               | - 8 ×                                                                                          |
| Components<br>Explorer Layers                                                                        | 罕几品 Panel 1 → 办☆<br>※ 경 내 ◀ ■ ▶ 위 ▲ マ                      | Main: 5.033ns<br>Time | Center Ext: 5.03<br>Os Ins 2ns 3ns 4ns | Sins         Delta: 0s           5ns         6ns         7ns         8ns         9ns         1 |
|                                                                                                      | <sup>1</sup> Input: S3                                     | × 🖬 💥 💥               | 0                                      | 0                                                                                              |
| © D4<br>© D5<br>© D6<br>© D7<br>© D8                                                                 | <sup>2</sup> Input: S2                                     | × 🗆 🗙 🐹               | 0                                      | 0                                                                                              |
|                                                                                                      | <sup>3</sup> Input: S1                                     | ¥ ¥ ¥ ×               | 1                                      | 1                                                                                              |
| + D14<br>+ D15<br>+ S0<br>+ S1<br>+ S2                                                               | Jinput: SO                                                 | × 🗆 💥 💥               | 0                                      | 1                                                                                              |
|                                                                                                      | <sup>•</sup> Output: Vou                                   | t 7 Peaks             | Delay                                  | Delay                                                                                          |
| <ul> <li>net@6310</li> <li>net@6314</li> <li>net@6315</li> <li>net@6333</li> <li>net@6333</li> </ul> | <sup>•</sup> <sub>2</sub> Input: D2                        | 3 Peaks               |                                        |                                                                                                |
| <ul> <li>net@6340</li> <li>net@6349</li> <li>net@6360</li> <li>net@6369</li> <li>net@6363</li> </ul> | <sup>'</sup> _Input: D3                                    | 4 Peaks               |                                        |                                                                                                |
| net@6385<br>net@6395<br>net@6404<br>net@6413                                                         |                                                            |                       |                                        |                                                                                                |
| + net@6420<br>+ net@6429<br>+ net@6436<br>+ net@6566<br>+ net@6576                                   |                                                            |                       |                                        |                                                                                                |
| NOTHING SELECTED SIZE                                                                                | E: 1077.5 x 519 TECH: mocmos (scale=350.0nm,foundry=MOSIS) |                       |                                        | (-170.5, 161.5)                                                                                |

Figure 25.4: IRSIM Waveforms of Layout Design of a Conventional 16-to-1 Multiplexer (Selector at 2 and 3)

| 😲 Electric                                                                                                             |                                                            |                       | -                    | - 0 ×                                                    |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|----------------------|----------------------------------------------------------|
|                                                                                                                        | iew Window Tools Help<br>• # 0.5 🗮 👎 🔁 🐚 💸 🗳 🕼 🔶 👄         |                       | 4                    | 5                                                        |
| Simulation of 16-to-1-Mu                                                                                               |                                                            |                       |                      |                                                          |
| Components<br>Explorer Layers                                                                                          | ײִ <u>1</u> 🛱 Panel 1 → nो 🛧<br>∰ अग्र 1 🖬 → M 🔺 🗢         | Main: 4.894ns<br>Time | Center s Ins 2ns 3ns | Ext: 4,894ns Center Delta: 0s<br>4ns 5ns 6ns 7ns 8ns 9ns |
|                                                                                                                        | <sup>1</sup> Input: S3                                     | × • • • • ×           | 0                    | 0                                                        |
| D4<br>D5<br>D6<br>D7<br>D8                                                                                             | <sup>²</sup> Input: S2                                     | × • × × ×             | 1                    | 1                                                        |
| D9<br>D10<br>D11<br>D12<br>D13                                                                                         | <sup>3</sup> Input: S1                                     | × 🗆 💓 💥               | 0                    | 0                                                        |
| D14     D15     S0     S1     S2                                                                                       | <sup>•</sup> Input: SO                                     | × □ ※ 鯊               | 0                    | 1                                                        |
| <ul> <li>S3</li> <li>Vout</li> <li>net@6293</li> <li>net@6297</li> <li>net@6303</li> <li>net@6304</li> </ul>           | Output: Vou                                                | ıt × ∞××<br>11 Peaks  | Delay                |                                                          |
| <ul> <li>net@6310</li> <li>net@6314</li> <li>net@6315</li> <li>net@6333</li> <li>net@6333</li> </ul>                   | ¦Input: D4                                                 | 5 Peaks               |                      |                                                          |
| <ul> <li>net@6340</li> <li>net@6349</li> <li>net@6360</li> <li>net@6360</li> <li>net@6369</li> <li>net@6383</li> </ul> | <sup>i</sup> Input: D5                                     | 6 Peaks               |                      |                                                          |
| • net@6385<br>• net@6395<br>• net@6404<br>• net@6413                                                                   |                                                            |                       |                      |                                                          |
| <ul> <li>net@6420</li> <li>net@6429</li> <li>net@6436</li> <li>net@6566</li> <li>net@6566</li> <li>net@6576</li> </ul> |                                                            |                       |                      |                                                          |
| NOTHING SELECTED SIZE                                                                                                  | E: 1077.5 x 519 TECH: mocmos (scale=350.0nm,foundry=MOSIS) |                       |                      | (-170.5, 161.                                            |

Figure 25.5: IRSIM Waveforms of Layout Design of a Conventional 16-to-1 Multiplexer (Selector at 4 and 5)

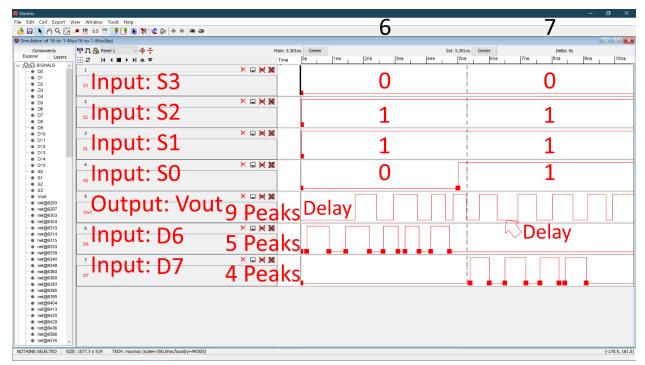



Figure 25.6: IRSIM Waveforms of Layout Design of a Conventional 16-to-1 Multiplexer (Selector at 6 and 7)

| 💭 Electric                                                                                                    |                                                            |                                 | <u> </u>        | - 0 ×                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                               | 'iew Window Tools Help<br>🏓 👯 0.5 👯 👎 🔁 🐚 💸 📽 😩 🖨 🖨 👄      |                                 | 8               | 9                                                                                                                          |
| Dimulation of 16-to-1-Mu                                                                                      |                                                            |                                 |                 | - 8 ×                                                                                                                      |
| Components<br>Explorer Layers                                                                                 | 罕几品 Panel 1 → ∲ ∻<br>Ⅲ 2                                   | Main: 5.213ns Center<br>Time Os | Ins 2ns 3ns 4ns | Ext: 5.213ms         Center         Delta: 0s           jóna         jéna         7ns         8ns         9ns         10ns |
| 00<br>01<br>02<br>03<br>04                                                                                    | <sup>1</sup> Input: S3                                     | × □                             | 1               | 1                                                                                                                          |
|                                                                                                               | <sup>2</sup> Input: S2                                     | × 🖬 💥 💥                         | 0               | 0                                                                                                                          |
| © D9<br>© D10<br>© D11<br>© D12<br>© D13                                                                      | <sup>3</sup> Input: S1                                     | ×□涎涎                            | 0               | 0                                                                                                                          |
| D14     D15     S0     S1     S2                                                                              | Input: SO                                                  | × • ¥ X                         | 0               | 1                                                                                                                          |
| <ul> <li>\$3</li> <li>Vout</li> <li>net@6293</li> <li>net@6297</li> <li>net@6303</li> <li>net@6304</li> </ul> | Cutput: Vou                                                | t 7 Peaks De                    | elay            |                                                                                                                            |
| • net@6310     • net@6314     • net@6315     • net@6333     • net@6339                                        | 🕯 Input: D8                                                | 4 Peaks                         |                 | Delay                                                                                                                      |
| net@6349     net@6360     net@6369     net@6369     net@6369     net@6363                                     | <sup>i</sup> Input: D9                                     | 3 Peaks                         |                 |                                                                                                                            |
| <ul> <li>net@6385</li> <li>net@6395</li> <li>net@6404</li> <li>net@6413</li> </ul>                            |                                                            |                                 |                 |                                                                                                                            |
|                                                                                                               |                                                            |                                 |                 |                                                                                                                            |
| NOTHING SELECTED SIZE                                                                                         | E: 1077.5 x 519 TECH: mocmos (scale=350.0nm,foundry=MOSIS) |                                 |                 | (-170.5, 161.5                                                                                                             |

Figure 25.7: IRSIM Waveforms of Layout Design of a Conventional 16-to-1 Multiplexer (Selector at 8 and 9)

| 😟 Electric<br>File Edit Cell Export Vi                                                               | iew Window Tools Help                                      |               | 10                                                                               | - ° ×                                                                                                               |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 👌 🗟 📐 🖑 Q 🐼 -                                                                                        | 🍠 拱 0.5 蒜 📑 📑 💽 💸 🗳 🎥 🔶 👄 🧼                                |               | 10                                                                               |                                                                                                                     |
| Simulation of 16-to-1-Mu                                                                             | Inc16-to-1-Mux{lay}  □ □ □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ | Main: 5.163ns | Center Ext:                                                                      | 5.163ns Center Delta: 0s                                                                                            |
| Components<br>Explorer Layers                                                                        |                                                            | Time          | Center         Ext:           0s         1ns         2ns         3ns         4ns | 5.163ns         Center         Delta: 0s           5ns         6ns         7ns         8ns         9ns         10ns |
|                                                                                                      | <sup>₁</sup> Input: S3                                     | × 🗆 💥 🐹       | 1                                                                                | 1                                                                                                                   |
| 04<br>05<br>06<br>07<br>08                                                                           | <sup>2</sup> Input: S2                                     | × = × ¥       | 0                                                                                | 0                                                                                                                   |
| 09<br>010<br>011<br>012<br>013                                                                       | s. Input: S1                                               | × 🗆 💥 🐹       | 1                                                                                | 1                                                                                                                   |
| © D14<br>© D15<br>© S0<br>© S1<br>© S2                                                               | Input: SO                                                  | × 🗆 💥 💥       | 0                                                                                | 1                                                                                                                   |
|                                                                                                      | <sup>•</sup> Output: Vou                                   | t 8 Peaks     | Delay                                                                            | Delay                                                                                                               |
| <ul> <li>net@6310</li> <li>net@6314</li> <li>net@6315</li> <li>net@6333</li> <li>net@6339</li> </ul> | ຼໍມInput: D10                                              | 4 Peaks       |                                                                                  |                                                                                                                     |
| net@6340     net@6349     net@6360     net@6369     net@6369     net@6363                            | <sup>'</sup> Input: D11                                    | 4 Peaks       |                                                                                  |                                                                                                                     |
| net@6385      net@6395      net@6404      net@6413                                                   |                                                            |               |                                                                                  |                                                                                                                     |
| net@6420<br>net@6429<br>net@6438<br>net@6566<br>net@6576                                             |                                                            |               |                                                                                  |                                                                                                                     |
| NOTHING SELECTED SIZE                                                                                | E: 1077.5 x 519 TECH: mocmos (scale=350.0nm,foundry=MOSIS) |               |                                                                                  | (-170.5, 161.5)                                                                                                     |

Figure 25.8: IRSIM Waveforms of Layout Design of a Conventional 16-to-1 Multiplexer (Selector at 10 and 11)

| 😨 Electric                                     |                                                           |               |                    | – 0 ×                                 |
|------------------------------------------------|-----------------------------------------------------------|---------------|--------------------|---------------------------------------|
| File Edit Cell Export Vi                       |                                                           |               | 12                 | 13                                    |
|                                                | • 恭 0.5 微 👎 🔁 🐧 🛸 🗳 🖗 + 🔿 👄 👘                             |               | 12                 |                                       |
| Simulation of 16-to-1-Mu                       |                                                           |               |                    | - # 🗙                                 |
| Components<br>Explorer Lavers                  | 🕎 🎵 🛗 Panel 1 🛛 🗸 🕸                                       | Main: 4.762ns |                    |                                       |
| SIGNALS ^                                      | ≝₿ н∢∎≻н≜⊽                                                | Time          | 0s 1ns 2ns 3ns 4ns | 5ns 6ns 7ns 8ns 9ns                   |
| - • D0<br>- • D1                               |                                                           | × □ ⋈ Ж       |                    |                                       |
| - • D2                                         | Input: S3                                                 |               | 1                  | 1                                     |
| • D3                                           | - mpacioo                                                 |               |                    | · <b>-</b>                            |
| - + D5                                         | 2                                                         | × 🗆 💥 麗       | _                  | -                                     |
|                                                | Input: S2                                                 |               | 1                  | 1                                     |
| D8                                             |                                                           |               |                    | · · · · · · · · · · · · · · · · · · · |
|                                                | 3                                                         | × 🗆 💥 💥       |                    |                                       |
| - + D11                                        | <sup>1</sup> Input: S1                                    |               | 0                  |                                       |
| + D12<br>+ D13                                 | sinput. Jr                                                |               |                    | <b>V</b>                              |
|                                                | 4                                                         | × 🗆 💥 💥       |                    |                                       |
| - • S0                                         | Input: SO                                                 |               | 0                  | 1                                     |
| \$ \$1<br>\$ \$2                               | sinput. 50                                                |               | U                  |                                       |
| - • S3                                         |                                                           |               |                    |                                       |
|                                                | <u>⊢`Outout∙ \/ou</u>                                     |               |                    | Delevi                                |
|                                                | Output: Vou                                               | 5 Peaks       | Delav              | Delay                                 |
| <ul> <li>net@6304</li> </ul>                   |                                                           |               |                    |                                       |
| net@6310      net@6314                         | <b>Input: D12</b>                                         | × 🗆 💥 💥       |                    |                                       |
|                                                |                                                           | 3 Peaks       |                    |                                       |
|                                                | · · ·                                                     |               | • • • • • • •      | 1                                     |
| <ul> <li>net@6340</li> <li>net@6349</li> </ul> | input: D13                                                | 2 Peaks       |                    |                                       |
| • net@6360                                     | minput. DT2                                               | 2 Peaks       |                    |                                       |
|                                                | 013                                                       |               |                    |                                       |
| - • net@6385                                   |                                                           |               |                    |                                       |
|                                                |                                                           |               |                    |                                       |
| net@6413                                       |                                                           |               |                    |                                       |
|                                                |                                                           |               |                    |                                       |
| - • net@6436                                   |                                                           |               |                    |                                       |
| net@6566  net@6576                             |                                                           |               |                    |                                       |
| NOTHING SELECTED SIZE                          | : 1077.5 x 519 TECH: mocmos (scale=350.0nm,foundry=MOSIS) |               |                    | (-170.5, 161.5)                       |
|                                                |                                                           |               |                    | ()                                    |

Figure 25.9: IRSIM Waveforms of Layout Design of a Conventional 16-to-1 Multiplexer (Selector at 12 and 13)

| 😃 Electric                                                                                           |                                                            |                       |                          |                     | - 0 ×                               |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|--------------------------|---------------------|-------------------------------------|
| File Edit Cell Export V                                                                              | iew Window Tools Help<br>🧈 拱 0.5 👯 👎 🎦 💦 💸 🙋 🕼 🔶 👄 👄       |                       | 14                       |                     | - 15                                |
| Simulation of 16-to-1-Mu                                                                             |                                                            |                       |                          |                     | - 7 🗙                               |
| Components<br>Explorer Layers                                                                        | 罕 ∏ 🛱 Panel 1 → 🛝 💠<br>ⅲ ८ । । । ■ ► ) । ▲ 🗢               | Main: 4.819ns<br>Time | Center<br>Os 1ns 2ns 3ns | Ext: 4.819ns Center | Delta: 0s<br> 6ns   7ns   8ns   9ns |
|                                                                                                      | <sup>1</sup> Input: S3                                     | × 🖬 💥 💥               | . 1                      |                     | 1                                   |
|                                                                                                      | <sup>²</sup> Input: S2                                     | × 🗆 💥 💥               | 1                        |                     | 1                                   |
| 09<br>010<br>011<br>013<br>014                                                                       | <sup>3</sup> Input: S1                                     | × 🖬 💓 💥               | 1                        |                     | 1                                   |
|                                                                                                      | <sup>•</sup> Input: SO                                     | × 🖬 💥 💥               | 0                        |                     | 1                                   |
| \$ \$3<br>\$ Vout<br>\$ net@6293<br>\$ net@6297<br>\$ net@6303<br>\$ net@6304                        | <sup>*</sup> Output: Vou                                   | t 4 Peaks             | Delay                    | De                  | lay                                 |
| net@6310     net@6314     net@6315     net@6333     net@6339                                         | input: D14                                                 | × ■ × × × × × 1 Peak  |                          |                     |                                     |
| <ul> <li>net@6340</li> <li>net@6349</li> <li>net@6360</li> <li>net@6369</li> <li>net@6369</li> </ul> | <sup>7</sup> Input: D15                                    | 3 Peaks               |                          |                     |                                     |
| net@6385<br>net@6395<br>net@6404<br>net@6413                                                         |                                                            |                       |                          |                     |                                     |
| <ul> <li>net@6420</li> <li>net@6429</li> <li>net@6436</li> <li>net@6566</li> <li>net@6566</li> </ul> |                                                            |                       |                          |                     |                                     |
|                                                                                                      | E: 1077.5 x 519 TECH: mocmos (scale=350.0nm,foundry=MOSIS) |                       |                          |                     | (-170.5, 161.5)                     |

Figure 25.10: IRSIM Waveforms of Layout Design of a Conventional 16-to-1 Multiplexer (Selector at 14 and 15)

| 😍 Electric                                                                                           |                                                        |                 |            |            |                     |          | - 0 ×           |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------|------------|------------|---------------------|----------|-----------------|
| Eile Edit Cell Export Vi                                                                             |                                                        |                 |            |            |                     |          |                 |
| 🚵 🖬 📐 🖑 📿 -                                                                                          | • 井 0.5 🇮 👎 📑 🐚 💸 🗳 🕼 🔶 👄                              | 3               |            |            |                     |          | - 8 ×           |
|                                                                                                      | crie-to-I-Mux-IG(ay)<br>罕几晶 Panel 1 ~ 載 🍫              | Main: 4 FF      | ins Center |            | Ext: 4.555ns Center | Delta: 0 |                 |
| Explorer Layers                                                                                      |                                                        | Time            | los   Ins  | 2ns    3ns | 4ns  5ns            | 6ns 7ns  | 8<br> 8ns ,  9r |
|                                                                                                      | <sup>1</sup> Input: D0                                 | × ¤××<br>1 Peak |            |            |                     |          | ^               |
| <ul> <li>D5</li> <li>D6</li> <li>D7</li> <li>D8</li> <li>D9</li> </ul>                               | <sup>2</sup> Input: D1                                 | 2 Peaks         | <b>P</b>   |            |                     |          |                 |
|                                                                                                      | <sup>3</sup> Input: D2                                 | 3 Peaks         |            |            |                     |          |                 |
| + D15<br>+ S0<br>+ S1<br>+ S2<br>+ S3                                                                | Input: D3                                              | 4 Peaks         |            |            |                     |          |                 |
| <ul> <li>Vout</li> <li>net@909</li> <li>net@930</li> <li>net@931</li> <li>net@952</li> </ul>         | <sup>₅</sup> Input: D4                                 | 5 Peaks         |            |            |                     |          |                 |
| net@1090     net@1111     net@1112     net@1143                                                      | <sup>i</sup> Input: D5                                 | 6 Peaks         |            |            |                     |          |                 |
| <ul> <li>net@1144</li> <li>net@1271</li> <li>net@1273</li> <li>net@1276</li> <li>net@1327</li> </ul> | <sup>7</sup> Input: D6                                 | 5 Peaks         |            |            |                     |          |                 |
| <ul> <li>net@1360</li> <li>net@1381</li> <li>net@1382</li> <li>net@1413</li> <li>net@1414</li> </ul> | <sup>*</sup> Input: D7                                 | 4 Peaks         |            |            |                     |          |                 |
| • net@1594<br>• net@1632<br>• net@1637<br>• net@1644 v                                               |                                                        | 4 Peaks         |            |            |                     |          | v               |
| NOTHING SELECTED SIZE                                                                                | : 387.5 x 1035.5 TECH: mocmos (scale=350.0nm,foundry=1 | (OSIS)          |            |            |                     |          | (-859, 181)     |

Figure 26.1: IRSIM Waveforms of Layout Design of a Transmission Gate 16-to-1 Multiplexer

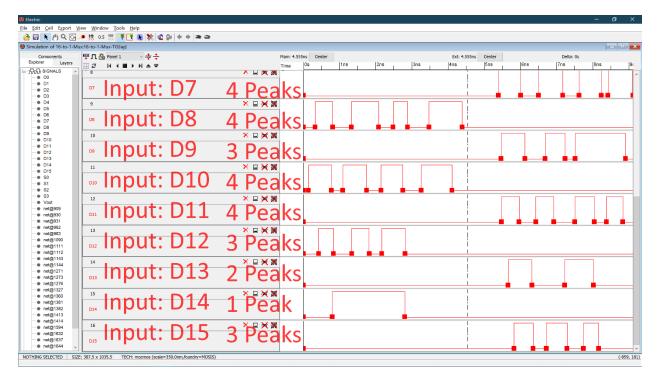



Figure 26.2: IRSIM Waveforms of Layout Design of a Transmission Gate 16-to-1 Multiplexer

| 😟 Electric                                                                                           |                                                              |                                         |                                      | - 6 ×                                      |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------------|
|                                                                                                      | (jew Window Iools Help<br>● 拱 0.5  👎 📑 🐚 💸 📽 🕼 🔶 👄 👄         |                                         | 0                                    | 1                                          |
| Simulation of 16-to-1-Mit                                                                            |                                                              |                                         | •                                    | - 8 ×                                      |
| Components<br>Explorer Layers                                                                        | Ლ几品 Panel 17 ∨ ग्री ∻<br>ﷺ ८ । । र ∎ ► ) । ▲ マ               | Main: 5.001ns<br>Time                   | Center Ext: 5.002 Cs 1ns 2ns 3ns 4ns | ns Center Delta: 0s<br>5ns 6ns 7ns 8ns 9ns |
| • D0<br>• D1<br>• D2<br>• D3                                                                         | <sup>"</sup> Input: S3                                       | × 🖬 💓 💥                                 | 0                                    | 0                                          |
|                                                                                                      | <sup>™</sup> Input: S2                                       | × 🗆 💥 💥                                 | 0                                    | 0                                          |
|                                                                                                      | <sup>1</sup> Input: S1                                       | ×□∑≋                                    | 0                                    | 0                                          |
| D14     D15     S0     S1     S2                                                                     | <sup>20</sup> Input: SO                                      | × 🖬 💥 💥                                 | 0                                    | 1                                          |
|                                                                                                      | <sup>21</sup> Output: Vout                                   | × • × × × × × × × × × × × × × × × × × × | Delay                                | Delay                                      |
| <ul> <li>net@002</li> <li>net@1090</li> <li>net@1111</li> <li>net@1112</li> <li>net@1143</li> </ul>  | <sup>2</sup> Input: D0                                       | 1 Peak                                  |                                      |                                            |
| <ul> <li>net@1144</li> <li>net@1271</li> <li>net@1273</li> <li>net@1276</li> <li>net@1327</li> </ul> | <sup>23</sup> Input: D1                                      | 2 Peaks                                 |                                      |                                            |
| • net@1360<br>• net@1381<br>• net@1382<br>• net@1382                                                 |                                                              |                                         |                                      |                                            |
| e net@1414<br>e net@1594<br>e net@1632<br>e net@1637<br>e net@1644                                   |                                                              |                                         |                                      |                                            |
| NOTHING SELECTED SIZ                                                                                 | E: 387.5 x 1035.5 TECH: mocmos (scale=350.0nm,foundry=MOSIS) |                                         |                                      | (-859, 181)                                |

Figure 26.3: IRSIM Waveforms of Layout Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 0 and 1)

| 😃 Electric                                                                                  |                                                           |                                |                                                                                       | - 0 ×       |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------|-------------|
| Eile Edit Cell Export Vi                                                                    | ew Window Iools Help<br>• # 0.5 # 👎 📑 🕟 🔆 🕸 😭 + 🔿 👄       |                                | 2                                                                                     | 3           |
| 📴 🖬 🥂 🖑 🗠 -                                                                                 |                                                           |                                | <b>Z</b>                                                                              | J           |
| Components<br>Explorer Layers                                                               | Ლ几冊 Panel 1 ✓ ग्रै ∻<br>Ⅲ Ø   N   4   ■ → N ▲ マ           | Main: 5.033ns<br>Time          | Center         Ext: 5.03           Os         1ns         2ns         3ns         4ns |             |
| 00<br>                                                                                      | <sup>1</sup> Input: S3                                    | × • • ¥                        | 0                                                                                     | 0           |
|                                                                                             | <sup>²</sup> Input: S2                                    | × • ¥                          | 0                                                                                     | 0           |
|                                                                                             | input: S1                                                 | × 🗆 💓 💥                        | 1                                                                                     | 1           |
|                                                                                             | Jinput: SO                                                | × 🗆 💥 🐹                        | 0                                                                                     | 1           |
| Vout<br>• Vout<br>• net@909<br>• net@930<br>• net@931                                       | Cutput: Vou                                               | <sup>× ••</sup> ××<br>7 Peaks  | Delay                                                                                 | Delay       |
| • netgot2<br>• e netgot3<br>• e netg0090<br>• e netg01111<br>• e netg01112<br>• e netg01143 | <sup>°</sup> Input: D2                                    | 3 Peaks                        |                                                                                       |             |
| -      et@1144 -      et@1271 -      et@1273 -      et@1276 -      et@1327                  | <sup>'</sup> Input: D3                                    | <sup>×</sup> • × ∗ × × 4 Peaks |                                                                                       |             |
| net@1360      net@1381      net@1382      net@1413      net@1414                            |                                                           |                                |                                                                                       |             |
| • net@1594<br>•• net@1594<br>•• net@1632<br>•• net@1637<br>•• net@1644 v                    |                                                           |                                |                                                                                       |             |
| NOTHING SELECTED SIZE                                                                       | 387.5 x 1035.5 TECH: mocmos (scale=350.0nm,foundry=MOSIS) |                                |                                                                                       | (-859, 181) |

Figure 26.4: IRSIM Waveforms of Layout Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 2 and 3)

| 😨 Electric<br>Eile Edit Cell Export V                                                                | view Window Iools Help                                      |                                         | -      | - 6 ×                         |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|--------|-------------------------------|
|                                                                                                      | → ∰ 0.5 ∰ <mark>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </mark> |                                         | 4      | 5                             |
| Simulation of 16-to-1-Mi     Components                                                              | lux:16-to-1-Mux-TG(lay)<br>罕几品 Panel 1   √ 载 李              | Main: 4.894ns                           | Center | Ext: 4.894ns Center Delta: 0s |
| Explorer Layers                                                                                      | III 2 N I I ► N ▲ ▼                                         | Main: 4.894ns                           |        | Ext: 4.894ns Center Delta: 0s |
|                                                                                                      | <sup>™</sup> Input: S3                                      | × 🗆 💥 💥                                 | 0      | 0                             |
|                                                                                                      | <sup>²</sup> Input: S2                                      | × • ¥ ¥                                 | 1      | 1                             |
| D10     D11     D12     D13     D14                                                                  | input: S1                                                   | × 🖬 💥 💥                                 | 0      | 0                             |
| D15     S0     S1     S2     S3                                                                      | <sup>•</sup> Input: SO                                      | × 🗆 💥 💥                                 | 0      | 1                             |
| Vout<br>• vout<br>• net@909<br>• net@930<br>• net@931<br>• net@952                                   | ့်Output: Voi                                               | L L Cav2⊢                               | Delay  | Delay                         |
| <ul> <li>net@963</li> <li>net@1090</li> <li>net@1111</li> <li>net@1112</li> <li>net@1143</li> </ul>  | ¦nput: D4                                                   | × ■ × × × × × × × × × × × × × × × × × × |        |                               |
| <ul> <li>net@1144</li> <li>net@1271</li> <li>net@1273</li> <li>net@1276</li> <li>net@1327</li> </ul> | <sup>*</sup> Input: D5                                      | 6 Peaks                                 |        |                               |
| <ul> <li>net@1360</li> <li>net@1381</li> <li>net@1382</li> <li>net@1413</li> <li>net@1414</li> </ul> |                                                             |                                         |        |                               |
| • net@1594<br>• net@1594<br>• net@1632<br>• net@1637<br>• net@1644 v                                 |                                                             |                                         |        |                               |
| NOTHING SELECTED SIZ                                                                                 | E: 387.5 x 1035.5 TECH: mocmos (scale=350.0nm,foundry=MOSIS | )                                       |        | (-859, 181)                   |

Figure 26.5: IRSIM Waveforms of Layout Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 4 and 5)

| 😃 Electric                                                                                  |                                                              |                                                                |                        |                                    | - 0 ×                     |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|------------------------|------------------------------------|---------------------------|
| Eile Edit Cell Export Vi                                                                    | jew Window Iools Help<br>● 拱 0.5 読 👎 👎 限 💸 🕸 😭 🔶 👄 👄         |                                                                | 6                      |                                    | 7                         |
| Simulation of 16-to-1-Mu                                                                    |                                                              |                                                                | 0                      |                                    | - # 🗙                     |
| Components<br>Explorer Layers                                                               | 罕几品 Panel 1 → 心 <sup>4</sup> ~<br>※ 2 H イ ■ ト H ▲ マ          | Main: 5.301ns<br>Time                                          | Center Ins 2ns 3ns 4ns | Ext: 5.301ns Center<br>5ns 6ns 7ns | Delta: 0s<br>8ns 9ns 10ns |
| D0     0     0     0     0     0     0     0                                                | Input: S3                                                    | × • ¥ ¥                                                        | 0                      |                                    | 0                         |
|                                                                                             | <sup>²</sup> Input: S2                                       | × • ¥                                                          | 1                      |                                    | 1                         |
| • 010<br>• 011<br>• 012<br>• 013<br>• 014                                                   | Înput: S1                                                    | × • • • • • • •                                                | 1                      |                                    | 1                         |
| • 511<br>• • 50<br>• • \$1<br>• • \$2<br>• • \$3                                            | Input: SO                                                    | × • ¥ ¥                                                        | 0                      |                                    | 1                         |
| Vout<br>                                                                                    | Cutput: Vou                                                  | <sup>×</sup> <sup>×</sup> <sup>×</sup> <sup>×</sup><br>9 Peaks | Delay                  |                                    |                           |
| • netgot2<br>• e netgot3<br>• e netg0090<br>• e netg01111<br>• e netg01112<br>• e netg01143 | <sup>∴</sup> Input: D6                                       | 5 Peaks                                                        |                        |                                    | elay                      |
| • net@1144<br>•• net@1271<br>•• net@1273<br>•• net@1276<br>•• net@1327                      | <sup>'</sup> <sub>"</sub> Input: D7                          | 4 Peaks                                                        |                        |                                    |                           |
| • net@1360<br>• net@1381<br>• net@1382<br>• net@1382                                        |                                                              |                                                                |                        |                                    |                           |
| + net@1414<br>+ net@1594<br>+ net@1632<br>+ net@1637<br>+ net@1644                          |                                                              |                                                                |                        |                                    |                           |
| NOTHING SELECTED SIZE                                                                       | E: 387.5 x 1035.5 TECH: mocmos (scale=350.0nm,foundry=MOSIS) |                                                                |                        |                                    | (-859, 181)               |

Figure 26.6: IRSIM Waveforms of Layout Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 6 and 7)

| 😕 Electric<br>Eile Edit <u>C</u> ell Export V                                                            | ijew <u>W</u> indow <u>I</u> ools <u>H</u> elp               |                             | 0               | - ° ×                                                                                                                    |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                                                          | 🔎 拱 0.5 拱 📑 🔁 🐧 💸 📽 🕼 🔶 👄 👄                                  |                             | 8               | 9                                                                                                                        |
| Simulation of 16-to-1-Mi                                                                                 |                                                              |                             |                 | - 🕫 🗙                                                                                                                    |
| Components<br>Explorer Layers                                                                            | थि nel 1 ∨ n‡r + + + + + + + + + + + + + + + + + + +         | Main: 5.213ns Ce<br>Time Os | Ins 2ns 3ns 4ns | Ext: 5.213ns         Center         Delta: 0s           5ns         6ns         7ns         8ns         9ns         10ns |
| • • D0<br>• • D1<br>• • D2<br>• • D3<br>• • D4                                                           | <sup>1</sup> Input: S3                                       |                             | 1               | 1                                                                                                                        |
| © D5<br>© D6<br>© D7<br>© D8                                                                             | <sup>²</sup> Input: S2                                       | × • × ×                     | 0               | 0                                                                                                                        |
| + D9<br>+ D10<br>+ D11<br>+ D12<br>+ D13                                                                 | <sup>3</sup> Input: S1                                       |                             | 0               | 0                                                                                                                        |
| D14<br>D15<br>\$ \$0<br>\$ \$1<br>\$ \$2                                                                 | 🖫 Input: SO                                                  | × 🗆 💥 💥                     | 0               | 1                                                                                                                        |
| <ul> <li>S3</li> <li>Vout</li> <li>net@909</li> <li>net@930</li> <li>net@931</li> <li>net@962</li> </ul> | Cutput: Vou                                                  | <sup>t</sup> 7 Peaks D      | )elay           |                                                                                                                          |
| <ul> <li>net@02</li> <li>net@1090</li> <li>net@1111</li> <li>net@1112</li> <li>net@1143</li> </ul>       | <sup>Input: D8</sup>                                         | 4 Peaks                     |                 | Delay                                                                                                                    |
| net@1144     net@1271     net@1273     net@1276     net@1327                                             | <sup>i</sup> Input: D9                                       | 3 Peaks                     |                 |                                                                                                                          |
| • net@1360<br>• net@1381<br>• net@1382<br>• net@1382                                                     |                                                              |                             |                 |                                                                                                                          |
| net@1414      net@1594      net@1632      net@1637      net@1644                                         |                                                              |                             |                 |                                                                                                                          |
| NOTHING SELECTED SIZ                                                                                     | E: 387.5 x 1035.5 TECH: mocmos (scale=350.0nm,foundry=MOSIS) |                             |                 | (-859, 181)                                                                                                              |

Figure 26.7: IRSIM Waveforms of Layout Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 8 and 9)

| Electric<br>File Edit Cell Export V                                                                  | iew Window Iools Help<br>• # 0.5 🛒 👎 🔁 💦 💸 🕸 🕼 🔶 👄 👄        |                                         | 10                                        | - ° ×                                                       |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------------------------|
| Simulation of 16-to-1-Mu                                                                             |                                                             |                                         | 10                                        | - 8 🗙                                                       |
| Components<br>Explorer Layers                                                                        | ₩ <u>Π</u> Banel 1 ↓ ψr ÷<br>∰ Ø N I I ► N A ▼              | Time                                    | Center         2ns         3ns         4m | Ext: 5.163ns Center Delta: 0s<br>: 5ns 6ns 7ns 8ns 9ns 10ns |
|                                                                                                      | <sup>1</sup> Input: S3                                      | × u 💥 💥                                 | 1                                         | 1                                                           |
|                                                                                                      | <sup>2</sup> Input: S2                                      | × • ¥ ¥                                 | 0                                         | 0                                                           |
| 010<br>011<br>012<br>013<br>014                                                                      | Input: S1                                                   | × u 💥 💥                                 | 1                                         | 1                                                           |
| © D15<br>© S0<br>© S1<br>© S2                                                                        | . Input: SO                                                 | <b>派 河 二 ×</b>                          | 0                                         | 1                                                           |
| + S3<br>+ Vout<br>+ net@909<br>+ net@930<br>+ net@931<br>+ net@962                                   | Output: Vou                                                 | t × • × × × × × × × × × × × × × × × × × | Delay                                     | Delay                                                       |
| • net@02<br>• e net@053<br>• e net@1090<br>• et@1111<br>• e net@1112<br>• e net@1143                 | ຼົມInput: D10                                               | 4 Peaks                                 |                                           |                                                             |
| • net@1144<br>••• net@1271<br>••• net@1273<br>••• net@1276<br>••• net@1327                           | Input: D11                                                  | 4 Peaks                                 |                                           |                                                             |
| <ul> <li>net@1360</li> <li>net@1381</li> <li>net@1382</li> <li>net@1413</li> <li>net@1414</li> </ul> |                                                             |                                         |                                           |                                                             |
| • net@1594<br>••• net@1594<br>••• net@1632<br>••• net@1637<br>••• net@1644                           |                                                             |                                         |                                           |                                                             |
| NOTHING SELECTED SIZE                                                                                | : 387.5 x 1035.5 TECH: mocmos (scale=350.0nm,foundry=MOSIS) |                                         |                                           | (-859, 181)                                                 |

Figure 26.8: IRSIM Waveforms of Layout Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 10 and 11)

| 😃 Electric                                     |                                                             |               |            |             |            | - 0 ×       |
|------------------------------------------------|-------------------------------------------------------------|---------------|------------|-------------|------------|-------------|
| <u>Eile Edit Cell Export V</u>                 |                                                             |               | 12         |             | 13         | 2           |
|                                                | ≠ 恭 □5 読 👎 🖪 🐧 💸 🗳 😭 🔶 希 🏔                                  |               |            |             | <u> </u>   |             |
| Simulation of 16-to-1-Mu                       |                                                             |               |            |             |            | - # ×       |
| Components<br>Explorer Lavers                  | 🕎 Π 📇 Panel 1 🛛 🗸 📌                                         | Main: 4.762ns |            | Ext: 4.762n |            | Delta: 0s   |
| E Jun Signals                                  | ≝₿ н∢∎⊁н≜⊽                                                  | Time          | Os Ins 2ns | 3ns 4ns     | 5ns 6ns 7r | is 8ns 9ns  |
| - + D0                                         |                                                             | × 🗆 💥 🐹       |            |             |            |             |
| - + D2                                         | Input: S3                                                   |               | 1          | 1           | 1          |             |
| - • D3                                         |                                                             |               | · · · ·    | 1           |            | -           |
| D5                                             | 2                                                           | 🗙 🗆 💥 麗       |            |             |            |             |
|                                                | Input: S2                                                   |               | 1          |             | 1          |             |
| - • D8                                         | * mpat. 52                                                  |               |            | i           | -          | -           |
| + D9<br>+ D10                                  | 3                                                           | × 🗆 💓 💥       |            | 1           | -          |             |
| + D11<br>+ D12                                 | <sup>1</sup> Input: S1                                      |               | 0          |             | (          |             |
| + D13                                          | simput. 5±                                                  |               | <b></b>    |             |            |             |
|                                                | 1                                                           | × ⊑ ¥ ¥       |            |             |            |             |
| • S0<br>• S1                                   | Input: SO                                                   |               | 0          |             |            |             |
| - • S2                                         | s input. 50                                                 |               | , v        | 1           | 1 1        |             |
| - • \$3                                        | 5                                                           | X 🗆 🖌 💥       |            |             |            |             |
| net@909                                        | Output Vout                                                 |               | Dolou      |             | Delay      |             |
| net@930      net@931                           | Cutput: Vout                                                | 5 Peaks       | Delay      |             | Delay      |             |
| <ul> <li>net@962</li> <li>net@963</li> </ul>   |                                                             | × ⊑ ¥ ¥       |            |             | <b>f</b>   |             |
| - • net@1090                                   | <b>Input: D12</b>                                           |               |            |             |            |             |
| <ul> <li>net@1111</li> <li>net@1112</li> </ul> |                                                             | 3 Peaks       |            |             |            |             |
| • net@1143                                     |                                                             |               |            |             |            |             |
| • et@1144<br>• et@1271                         | <u>Input: D13</u>                                           |               |            |             |            |             |
| <ul> <li>net@1273</li> <li>net@1276</li> </ul> |                                                             | 2 Peaks       |            | i           |            |             |
| net@1327                                       |                                                             |               |            | I           | <b>i</b>   | • •         |
| • net@1360<br>• ent@1381                       |                                                             |               |            |             |            |             |
| net@1382                                       |                                                             |               |            |             |            |             |
| net@1413      net@1414                         |                                                             |               |            |             |            |             |
| • net@1594                                     |                                                             |               |            |             |            |             |
| et@1637                                        |                                                             |               |            |             |            |             |
| • net@1644 v                                   |                                                             |               |            |             |            |             |
| NOTHING SELECTED SIZE                          | : 387.5 x 1035.5 TECH: mocmos (scale=350.0nm,foundry=MOSIS) |               |            |             |            | (-859, 181) |
|                                                |                                                             |               |            |             |            |             |

Figure 26.9: IRSIM Waveforms of Layout Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 12 and 13)

| 😃 Electric                                                                                           |                                                           |               |                | - 0                                                       | ı x         |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------|----------------|-----------------------------------------------------------|-------------|
| <u>Eile E</u> dit <u>C</u> ell E <u>x</u> port <u>V</u> i                                            |                                                           |               | 14             | 15                                                        |             |
| 🚵 🖬 📐 🖑 🛇 -                                                                                          |                                                           |               | <u>14</u>      |                                                           |             |
| Simulation of 16-to-1-Mu                                                                             | 1                                                         |               |                |                                                           | e 🗙         |
| Components<br>Explorer Lavers                                                                        | 🕎 🎵 🛗 Panel 1 💎 🕸                                         | Main: 4.819ns |                | Ext: 4.819ns Center Delta: 0s<br> 4ns  5ns  6ns  7ns  8ns | 9na         |
| SIGNALS A                                                                                            | ⅲ♂ н∢∎⊁н≜⊽                                                | Time          | Os Ins 2ns 3ns | 4ns 5ns 6ns 7ns 8ns                                       | 3115        |
|                                                                                                      | <sup>Input:</sup> S3                                      | × 🖬 💥 💥       | . 1            | 1                                                         |             |
|                                                                                                      | <sup>²</sup> Input: S2                                    | × 🗆 💥 💥       | 1              | 1                                                         |             |
|                                                                                                      | Input: S1                                                 | × 🗆 💓 💥       | 1              | 1                                                         |             |
| © D14<br>© D15<br>© S0<br>© S1<br>© S2<br>© S3                                                       | Jinput: SO                                                | × 🗆 💥 🐹       | 0              | 1                                                         |             |
| ● Vout<br>● Vout<br>● net@909<br>● net@930<br>● net@931                                              | <sup>*</sup> Output: Vou                                  | t 4 Peaks     | Delay          | Delay                                                     |             |
| • netgo1112<br>• • netg01112<br>• • netg01112                                                        | Input: D14                                                | 1 Peak        |                |                                                           |             |
| <ul> <li>net@1144</li> <li>net@1271</li> <li>net@1273</li> <li>net@1276</li> <li>net@1327</li> </ul> | Input: D15                                                | 3 Peaks       |                |                                                           |             |
|                                                                                                      |                                                           |               |                |                                                           |             |
|                                                                                                      |                                                           |               |                |                                                           |             |
| NOTHING SELECTED   SIZE                                                                              | 387.5 x 1035.5 TECH: mocmos (scale=350.0nm,foundry=MOSIS) |               |                |                                                           | (-859, 181) |

Figure 26.10: IRSIM Waveforms of Layout Design of a Transmission Gate 16-to-1 Multiplexer (Selector at 14 and 15)

#### Section 5.3: Comparison:

For IRSIM, by comparing Figure 23 (Conventional Schematic), Figure 24 (Transmission Gate Schematic), Figure 25 (Conventional Layout), and Figure 26 (Transmission Gate Layout) with each other, the way the output reacted given the certain inputs appears to be the same. In addition, with the inputs we gave, it gave us the appropriate outputs that we were looking for, so it confirms that our design is correct. The outputs that we were looking from could be seen by using the truth table on Table 1. The only noticeable difference between the figures would be the propagation delay, which could be seen on Table 6. Depending on the which design, each has its own different propagation delay.

In conclusion, IRSIM shows the same form of result towards Electric Schematic and Electric Layout with only a few noticeable differences. The difference that was seen through the figures were the rise time, fall time, and propagation delay. The differences can be viewed on Table 6, which has a summary of the measurements.

#### Section 6: LTSPICE Code and Parasitic Extractions:

The Spice Code that we wrote is shown on Figure 27. It provides certain values to the inputs so that it'll be able to produce a certain output. The computations that we tested set each input (D0-D15) high for 50 nanoseconds at different times, then back to low; in other words, 100 nanoseconds period, with rise time and fall time of 5 nanoseconds and 50% duty cycle. Each of the inputs were high at different times so they wouldn't be able to relate to each other. After that, we set tested all the computations for the selector (S0-S3), starting from 0 to 15. This way, it'll be able to output each individual input and show a wavelike output.

We ran LTSPICE on the conventional 16-to-1 Multiplexer Schematic, conventional 16to-1 Multiplexer Layout, transmission gate 16-to-1 Multiplexer Schematic, and transmission gate 16-to-1 Multiplexer Layout and it generated a code underneath it. A sample of the Spice Deck and Parasitic Extractions that came from those designs are shown from Figure 28 to Figure 35.

| VDD VDD 0 DC 3.3<br>VGND GND 0 DC 0<br>Vin2 D0 0 PULSE (0 3.3 0n 5n 5n 50n 1600n)<br>Vin3 D1 0 PULSE (0 3.3 100n 5n 5n 50n 1600n)<br>Vin4 D2 0 PULSE (0 3.3 200n 5n 5n 50n 1600n)<br>Vin5 D3 0 PULSE (0 3.3 300n 5n 5n 50n 1600n)<br>Vin6 D4 0 PULSE (0 3.3 400n 5n 5n 50n 1600n)<br>Vin7 D5 0 PULSE (0 3.3 500n 5n 5n 50n 1600n)<br>Vin8 D6 0 PULSE (0 3.3 600n 5n 5n 50n 1600n)<br>Vin9 D7 0 PULSE (0 3.3 700n 5n 5n 50n 1600n)<br>Vin10 D8 0 PULSE (0 3.3 800n 5n 5n 50n 1600n)<br>Vin11 D9 0 PULSE (0 3.3 1000n 5n 5n 50n 1600n)<br>Vin12 D10 0 PULSE (0 3.3 1000n 5n 5n 50n 1600n)<br>Vin13 D11 0 PULSE (0 3.3 1200n 5n 5n 50n 1600n)<br>Vin14 D12 0 PULSE (0 3.3 1200n 5n 5n 50n 1600n)<br>Vin15 D13 0 PULSE (0 3.3 1200n 5n 5n 50n 1600n)<br>Vin16 D14 0 PULSE (0 3.3 1500n 5n 5n 50n 1600n)<br>Vin17 D15 0 PULSE (0 3.3 100n 5n 5n 50n 1600n)<br>Vin18 S0 0 PULSE (0 3.3 100n 5n 5n 50n 1600n)<br>Vin19 S1 0 PULSE (0 3.3 100n 5n 5n 50n 1600n)<br>Vin19 S1 0 PULSE (0 3.3 400n 5n 5n 400n 800n)<br>Vin20 S2 0 PULSE (0 3.3 800n 5n 5n 50n 1600n) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Figure 27: Spice Code Written For LTSPICE

| 🦅 Utrpice XVII = [16-to-1-Mux.spi]                                                                                                                                                                                                                                                                                                                                                                                                                               | <br>٥ | ×   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 🖹 File Edit View Simulate Iools Window Help                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 8 x |
| ▶■■ 型体ののの気障は国家をある時間の「なっている」をついていたのです。                                                                                                                                                                                                                                                                                                                                                                                                                            |       |     |
| B 18-to-1-Mux spi  = 18-to-1-Mux spi                                                                                                                                                                                                                                                                                                                                                                                                                             |       |     |
| <pre>*** SPICE deck for cell 16-to-1-Mux(sch) from library 16-to-1-Mux *** Created on Tue Oct 29, 2019 15:40:18 *** Last revised on Sun Nov 09, 2019 10:46:45 *** Written on Sun Nov 10, 2019 14:19:50 by Electric VLSI Design System, version 9.07 *** Layout tech: mocmos, foundry MOSIS *** UC SPICE *** , MIN.RESIST 4.0, MIM_CAPAC 0.1FF</pre>                                                                                                              |       | ^   |
| *** SUBCIRCUIT 16-Lo-1-Mux_AND FROM CELL AND[sch]<br>.SUBCKT_16-to-1-Mux_AND A B Vout<br>** GLOBAL gnd<br>** GLOBAL gnd<br>** GLOBAL vdd<br>Mnmos82 net810 B gnd gnd NMOS L-0.35U W-0.075U<br>Mnmos82 vout net812 A und gnd gnd NMOS L-0.35U W-0.875U<br>Mpmos81 vdd B net812, vdd PMOS L-0.35U W-1.75U<br>Mpmos82 vdd B net812, vdd PMOS L-0.35U W-1.75U<br>Mpmos82 vdd B net812, vdd PMOS L-0.35U W-1.75U<br>Mpmos82 vdd net812, Vout vdd PMOS L-0.35U W-1.75U |       |     |
| *** SUBCIECUIT 16-to-1-Mux_3-AND FROM CELL 3-AND(sch)<br>*SUBCKT_16-to-1-Mux_3-AND A B C Vout<br>** GLOBAL vdd<br>** GLOBAL vdd<br>XAND00 h B nct00_16-to-1-Mux_AND<br>XAND01 nct00_C Vout_16-to-1-Mux_AND<br>XAND01 nct00_C Vout_16-to-1-Mux_AND<br>XAND01 nct00_C Vout_16-to-1-Mux_AND<br>XAND01 nct00_C Vout_3-AND                                                                                                                                            |       | ł   |
| *** SUBCIRCUIT 16-to-1-Mux OR FROM CELL OR(sch)<br>.SUBCKT 16-to-1-Mux OR A Wout.<br>** GLOBAL Vdd<br>Mnmos80 vout nct813 gnd gnd NMOS L-0.35U W-0.875U<br>Mnmos81 nct813 gnd gnd NMOS L-0.35U W-0.875U<br>Mnmos82 ret813 g nd gnd NMOS L-0.35U W-0.875U<br>Mpmos80 vdd A nct82 vdd PMOS L-0.35U W-1.75U<br>Mpmos80 vdd A nct82 vdd PMOS L-0.35U W-1.75U<br>Mpmos82 vdd nct82 Notl vdd PMOS L-0.35U W-1.75U<br>Mpmos82 vdd nct813 vdd PMOS L-0.35U W-1.75U       |       |     |
| *** SUBCIRCUIT 16-to-1-Mux 4-OR FROM CELL 4-OR(sch)<br>.SUBCKT 16-to-1-Mux 4-OR FROM CELL 4-OR(sch)<br>** GLOBAL gnd<br>** GLOBAL gnd<br>** GLOBAL net89 16-to-1-Mux_OR<br>XOR80 A B net89 16-to-1-Mux_OR<br>XOR81 net89 16-to-1-Mux_OR<br>XOR82 C D net89 16-to-1-Mux_OR<br>XOR82 C D net89 16-to-1-Mux_OR<br>XOR82 C D net89 16-to-1-Mux_OR<br>XOR82 C D net89 16-to-1-Mux_OR                                                                                  |       | ~   |

Figure 28: Generated Spice Deck of Conventional 16-to-1 Multiplexer Schematic

| <sup>7</sup> (Tripice XVII - 116-to-11-Muxsa)] − 0 <sup>7</sup> X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ■ Efe Edit Vew Simulate Tools Window Help - ・ * ●                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *** SPICE deck for cell 16-to-1-Mux(1ay) from library 16-to-1-Mux *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| *** Last revised on Sat Nov 09, 2019 10:46:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| *** Written on Sun Nov 10, 2019 14:16:37 by Electric VLSI Design System, version 9.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| *** Layout tech: mocmos, foundry MOSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| *** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| *** P-Active: areacape.9Ff/um22_edgecape0.0Ff/um, res=2.5ohms/gg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *** N-Active: areacap=0.9Ff/um <sup>2</sup> , edgecap=0.0Ff/um, res=3.0ohms/sq<br>*** Polysilicon=1: areacap=0.16fFf/um <sup>2</sup> , edgecap=0.060Ff/um, res=6.2ohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| *** Polysilicon-2: areacap=1.0Ff/um <sup>2</sup> , edgecap=0.0Ff/um, res=50.0ohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| *** Transistor-Poly: areacap=0.09FF/um^2, edgecap=0.0FF/um, res=2.5ohms/sg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| *** Poly-Cut: areacap=0.0FF/um^2, edgecap=0.0FF/um, res=2.20hms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| *** Active-Cut: areacap=0.0FF/um2, edgecap=0.0FF/um, res=2.5ohms/ag<br>*** Mctal: research 2/20FE/um2, edgecap=0.10FF/um, res=0.078chme/ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Metal-1. aleacap-0.1203FF/dm 2, edgecap=0.1104FF/dm, les=0.0700fmms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| *** Vial: areacap=0.0FF/um^2, edgecap=0.0FF/um, res=1.0ohms/sg *** Metal-2: areacap=0.08FF/um^2, edgecap=0.09FF/rum, res=0.078ohms/sg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| *** Via: areacape.ord/F/um2, edgecape.org/Afr/um, resel.90hms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *** Metal-3: areacap=0.0843FF/um^2, edgecap=0.0974FF/um, res=0.078ohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| *** Via3: areacap=0.0FF/um^2, edgecap=0.0FF/um, res=0.8ohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| *** Metal-4: areacap=0.0843FF/um^2, edgecap=0.0974FF/um, res=0.078ohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| *** Vi4: areacap=0.0FF/um^2, edgecap=0.0FF/um, res=0.8ohms/sq<br>*** Meta15: areacap=0.0815F/um^2, edgecap=0.0FF/um, res=0.0780hms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| *** Metal-5: areacap=0.0843FF/um <sup>2</sup> , edgecap=0.0974FF/um, res=0.0700hms/sq<br>*** Via5: areacap=0.0FF/um <sup>2</sup> 2, edgecap=0.0FF/um, res=0.80hms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| *** Metal-6: areacap=0.0423F/um2, edgecap=0.1273F/um, res=0.036ohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| *** Hi-Res: areacap=0.0FF/um^2, edgecap=0.0FF/um, res=1.0ohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *** TOP LEVEL CELL: 16-to-1-Mux(lav)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mnmos0460 gnd net06395 net06310 gnd NMOS L=0.350 W=1.750 AS=1.378P AD=6.931P PS=3.6750 PD=17.0680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mnmos@461 net@6310 net@6297#6nmos@461_poly-left gnd gnd NMOS L=0.35U W=1.75U AS=6.931P AD=1.378P PS=17.068U PD=3.675U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mnmos@462 net@6369 net@6310#13nmos@462_poly-right gnd gnd NNOS L=0.35U W=1.75U AS=6.931P AD=1.991P PS=17.068U PD=5.775U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mmmos#463 gnd net@633344nmos#463_poly-left net@6310 gnd NMOS L=0.35U W=1.75U AS=1.378P AD=6.931P PS=3.675U PD=17.068U<br>Mmmos#464 net@6310 net@640442Pmmos#464 poly-left nnd qnd NMOS L=0.35U W=1.75U AS=6.931P AD=1.378P PS=1.7068U PD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mmoseve necesso necesso provente una porver una dia mos necesso wellisto necesso realisto realisto realisto realisto de la solo                                                                                                                                                                                                                                             |
| Mmmosd466 net@65666 net@6560#18nmosd466 poly-left net@6576 qnd NMOS L=0.35U W=1.75U AS=1.914P AD=1.914P PS=3.937U PD=3.937U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mnmos@467 net@6395#3contact@2359 metal=1-polysilicon-1 net@6293#2nmos@467 poly-right gnd gnd NMOS L=0.350 W=1.750 AS=6.931P AD=1.991P PS=17.0680 PD=5.7750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mnmos@468 net@6576 net@6315#15nmos@468_poly-left net@6293#3contact@2390_metal-1-polysilicon-1 gnd NMOS L=0.35U W=1.75U AS=1.608P AD=1.914P PS=4.462U PD=3.937U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mnmos@469 gnd D1#Onmos@469_poly-left net@6303 gnd NMOS L=0.35U W=1.75U AS=1.914P AD=6.931P PS=3.937U PD=17.068U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mmmos#470 net#6303 net#631542nmos#470 poly-left net#6314 gnd NMOS L=0.350 W=1.750 A5-1.914P AD=1.914P FS=3.9370 DD=3.9370<br>Mmmos#471 net#6239 net#630441Znmos#471 poly-right and NMOS L=0.350 W=1.750 A5-6.931P AD=1.991P FS=7.7600 DD=5.7750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mmmos@4/1 hete629/ hete6004#12nmos@4/1 poly=rtght gnd gnd NMMS L=0.350 W=1.750 A=6.591P AU=1.591P E=1.70000 PU=5.750<br>Mmmos@4/2 net@6318 0822nmos@4/2 poly=left net@6304 qnd NMOS L=0.350 W=1.750 A=6.091P AU=1.591P E=4.4620 PD=3.9370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mmose4/2 netcosif 200mose4/2 poly-lett nete639 god Meso 1-0.350 w1.150 AS-1.001 AD-1.001 AD-1 |
| Mmmos@474 net@6339 S1#2nmos@474 poly-left net@6349 gnd NMOS L=0.35U W=1.75U AS=1.914P AD=1.914P PS=3.937U PD=3.937U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mnmos@475 net@6333 net@6340∦12nmos@475_poly-right gnd gnd NMOS L=0.35U W=1.75U AS=6.931P AD=1.991P PS=17.068U PD=5.775U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mnmos0476 net06349 net06360#2nmos0476_poly-left net06340 gnd NMOS L=0.350 W=1.750 AS=1.608P AD=1.914P PS=4.4620 PD=3.9370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mmmos@477 gnd D3#3nmos@477 poly-left net@429 gnd NMOS L=0.35U W=1.75U AS=1.914P AD=6.931P PS=3.937U PD=17.068U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mmmos@478 net66429 S1#6nmos@478 poly-left net66436 qnd NMOS L=0.350 W=1.757 UAS=1.914P AD=1.914P PS=3.9370 PD=3.9370<br>Mmmos@479 net660444contact@2430 metal-1-n-act net6642042nmos@479 poly-right qnd MMOS L=0.350 W=1.750 AS=6.931P AD=1.991P PS=17.0680 PD=5.7750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <pre>Mmmose4/9 netee404#contacte430 metal=1=n=act netee420#cmmose4/9 poly=right gnd gnd gmds h=0.300 w=1.700 A3=6.931P AD=1.991P F3=1.0660 PD=3.7750 Mmmose4A80 poly=cleft nete6420#cmmose4/9 metal=1-polysilion=1 gnd MMOS L=0.350 W=1.750 A5=1.608P AD=1.914P F5=4.4620 PD=3.9370</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MenergR401 pate (2154) apte at 0141 a pate (141) perceR401 pate and and MMOC T 0 250 M 1 350 MC (0010 DC 13 0000 DD 5 7350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Simulation Time = 272.692 ns Transient Analysis 85.2% done. Simulation Speed: 22.8044 ns/s inter=1 fill-ins: 6412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Figure 29: Generated Spice Deck of Conventional 16-to-1 Multiplexer Layout

| 9 LTspice XVII - [16-to-1-Mux.spi]                                                                                          | – 0 × |
|-----------------------------------------------------------------------------------------------------------------------------|-------|
| Edit Kiew Simulate Tools Window Help                                                                                        | - 1 X |
| ▶29日 御休司ののの期間は国務局はお命務通過して中くキシネクジックであられる                                                                                     |       |
| B 16-to-1-Mux.spi = 16-to-1-Mux.spi                                                                                         |       |
| ** Extracted Parasitic Capacitors ***                                                                                       |       |
| CO net#6310 0 7.63/FF                                                                                                       |       |
| C1 net@6395#3contact@2359 metal-1-polysilicon-1 0 5.15fF                                                                    |       |
| C2 net#6369 0 19.742FF                                                                                                      |       |
| C3 net86297 0 10.126fF                                                                                                      |       |
| C4 net@6333#5contact@2373 metal=1-polysilicon=1 0 5.094fF                                                                   |       |
| C5 nct86404#1contact82374 mctal-1-polysilicon-1 0 7.35fF                                                                    |       |
| C6 net@6293#3contact@2390 metal=1=polysilicon=1 0 7.135fF                                                                   |       |
| C7 D0#0contact@2468_metal=1-metal=2 0 7.8221F                                                                               |       |
| C8 net@6360#3contact@2421 metal=1-polysilicon=1 0 20.552fF                                                                  |       |
| C9 net@6315#1contact@2403_metal=1=polysilicon=1 0 11.324fF                                                                  |       |
| C10 net@6304 0 7.359fF                                                                                                      |       |
| Cll Dl#3contact@2393_metal-1-polysilicon-1 0 6.04fF                                                                         |       |
| C12 S0#3contact@2405_metal=1-polysilicon=1 0 4.472fF                                                                        |       |
| C13 net#6340 0 7.41FF                                                                                                       |       |
| C14 D2#3contact02409 metal-1-polysilicon-1 0 4.205fF<br>C15 net06333 0 9.128fF                                              |       |
| C16 S1 0 74.857fr                                                                                                           |       |
| C17 net06420#3contact02438 metal=1-polysilicon=1 0 7.408fF                                                                  |       |
| C10 D3 0 4.606fF                                                                                                            |       |
| C19 nct@6404#4contact@2430 metal=1=n=act 0 10.686fF                                                                         |       |
| C20 S0 0 58.912fF                                                                                                           |       |
| C21 net@6315#3contact@2440 metal-1-p-act 0 8.786fF                                                                          |       |
| C22 D2 0 4.079fF                                                                                                            |       |
| C23 D1 0 5.874fF                                                                                                            |       |
| C24 D0 0 7.684fF                                                                                                            |       |
| C25 net@6609 0 7.637fF                                                                                                      |       |
| C26 net@6694#3contact@2477_metal=1-polysilicon=1 0 5.15fF                                                                   |       |
| C27 net@6668 0 12.038fF                                                                                                     |       |
| C28 net06596 0 10.126fF<br>C29 net0663245contact02491 metal=1=polysilicon=1 0 5.094fF                                       |       |
| C30 ncte0632#5contacte2491_mctal-1-polysilcon-1 0 5.094FF<br>C30 ncte6703#1contacte2492_mctal-1-polysilcon-1 0 7.35fF       |       |
| C31 neteof03+1contacte2/492 metal=1-polysilicon=1 0 7.33rF<br>C31 neteof592+35contacte2/508 metal=1-polysilicon=1 0 7.135rF |       |
| C32 D4/Contact@2586 metal=1-metal=2 0 7.822F                                                                                |       |
| C33 net665941contacte2539 metal-1-polysilicon-1 0 20.552fF                                                                  |       |
| C34 net@6614flcontact@2521 metal-1-polysilicon-1 0 11.324fF                                                                 |       |
| C35 neL06603 0 7.359FF                                                                                                      |       |
| C36 D5#3contact@2511 metal=1=polysilicon=1 0 6.04fF                                                                         |       |
| C37 S0#21contact02523 metal-1-polysilicon-1 0 4.472fF                                                                       |       |
| C38 net@6639 0 7.41fF                                                                                                       |       |
| C39 D6#3contact@2527_metal=1-polysilicon=1 0 4.205fF                                                                        |       |
| C40 net@6632 0 9.128FF                                                                                                      |       |
| C41 nct@6719#3contact@2556_mctal=1=polysilicon=1 0 7.408fF                                                                  |       |
| C42 D7 0 4.606fF                                                                                                            |       |
| C43 net@6703#4contact@2548 metal-1-n-act 0 10.6861F                                                                         |       |
| C44 net@6614#3contact@2558_metal=1=p=act 0 8.786fF<br>C45 D6 0 4.079fF                                                      |       |
| C45 D5 0 5.874fF                                                                                                            |       |
| C40 D3 0 3.8741F                                                                                                            | Ÿ     |
|                                                                                                                             |       |

Figure 30: Extracted Parasitic Capacitors Sample of Conventional 16-to-1 Multiplexer Layout



Figure 31: Extracted Parasitic Resistors Sample of Conventional 16-to-1 Multiplexer Layout

| بالا المراجع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | – ø × |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 🚔 File Edit View Simulate Tools Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 1 X |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| B 16-to-1-Mux-TG spi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| <pre>P+** SPICE deck for cell 16-to-1-Mux-TG[sch] from library 16-to-1-Mux *** Created on Tue Nov 05, 2019 16:59:31 *** Last rovised on Sat Nov 09, 2019 11:08:26 *** Verliten on Sun Nov 10, 2019 14:18:53 by Electric VLSI Design System, version 9.07 *** Layout tech: mocmos, foundry MOSIS *** UC SFICE ***, MIN_RESIST 4.0, MIN_CAFAC 0.1FF *** UC SFICE ***, MIN_RESIST 4.0, MIN_CAFAC 0.1FF *** SUBCIRCUIT 16-to-1-Mux_4-to-1-Mux-TG FRCM CELL 4-to-1-Mux-TG[sch] .sUBCKT 16-to-1-Mux_4-to-1-Mux_TG B C D S0 S1 Vout *** GLORAL and *** GLORAL and *** GLORAL and *** GLORAL and Munos00 A net0146 net0104 gnd NMOS 1-0.35U W-0.875U Munos02 B S0 net0104 gnd NMOS 1-0.35U W-0.875U Munos02 A so net0146 for 10 Vou f and NMOS 1-0.35U W-0.875U Munos04 D S0 net01468 gnd NMOS 1-0.35U W-0.875U Munos04 D S0 net01468 gnd NMOS 1-0.35U W-0.875U Munos04 D S0 net0146 S0 gnd MMOS 1-0.35U W-0.875U Munos04 D S0 net0146 gnd MMOS 1-0.35U W-0.875U Munos04 D S0 net0145 gnd MMOS 1-0.35U W-0.87</pre>                                                                               |       |
| Mpmos09         net0104         S0 A vid         PMOS L=0.330 W=1.750           Mpmool9         net0104         net0164         B vid         PMO           Mpmool9         net0104         net0164         B vid         PMO           Mpmool9         net0104         net0104         Dvid         PMO           Mpmool9         net0104         net0104         vid         PMOS           Mpmool9         net0104         vid         PMOS         L-0.350 W=1.750           Mpmool9         net0104         vid         PMOS         L-0.350 W=1.750           Mpmool9         net0104         vid         PMOS         L-0.350 W=1.750           Mpmool9         vid         Not         L-0.350 W=1.750           Mpmool9         vid         S0         net0164         vid           Mpmool9         vid         S1         net0164         vid           Mpmool9         vid         S1         net0164         vid         vid           Mpmool9         vid         S1         net0164         vid         vid         vid           Mpmol9         vid         S1         net0164         vid         vid         vid           Mpmol9         vid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| .global gnd vdd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| *** TOP LEVEL (ELL: 16-to-1-Mux-TG[ach]<br>X 4-to-1-M80 DO DI D 20 SO SI net89 16-to-1-Mux_4-to-1-Mux-TG<br>X 4-to-1-M81 D4 D5 D6 D7 SO SI net89 16-to-1-Mux_4-to-1-Mux-TG<br>X 4-to-1-M83 D12 D13 D11 SO SI net85 16-to-1-Mux-To-1-Mux-TG<br>X 4-to-1-M83 D12 D13 D14 D15 SO SI net88 16-to-1-Mux 4-to-1-Mux-TG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| A spice Code nodes in cell cell '16-to-1-Mux-TG(sch)'<br>VDD VDD 0 DC 3.3<br>VDD VDD 0 DC 3.3<br>VIND VDD 0 DC 0<br>Vin3 D1 0 PULSE (0 3.3 20n 0.1n 0.1n 10n 320n)<br>Vin3 D1 0 PULSE (0 3.3 20n 0.1n 0.1n 10n 320n)<br>Vin4 D2 0 PULSE (0 3.3 40n 0.1n 0.1n 10n 320n)<br>Vin5 D3 0 PULSE (0 3.3 60n 0.1n 0.1n 10n 320n)<br>Vin5 D3 0 PULSE (0 3.3 80n 0.1n 0.1n 10n 320n)<br>Vin5 D4 0 PULSE (0 3.3 80n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 100n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 100n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 D5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 0 PULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 0 PULSE (0 9ULSE (0 3.3 120n 0.1n 0.1n 10n 320n)<br>Vin5 0 PULSE (0 9ULSE (0 9UL |       |

Figure 32: Generated Spice Deck of Transmission Gate 16-to-1 Multiplexer Schematic

| ( Tspice XVII - (16-to-1-Mux-TGspi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | – n × |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| E File Edit View Simulate Jools Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 11  |
| ■ De Lou Tew Yunname Toop Thuron. Teo S # De W マクシックロットロント                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| *** SPICE deck for cell 16-to-1-Mux-TG(lay) from library 16-to-1-Mux<br>*** Created on Thu Nov 07, 2019 16:17:54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~     |
| *** Last revised on Sat Nov 09, 2019 10:47:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| *** Written on Sun Nov 10, 2019 14:20:31 by Electric VLSI Design System, version 9.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| *** Layout tech: mocmos, foundry MOSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| *** UC SPICE *** , MIN RESIST 4.0, MIN CAPAC 0.1FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| *** P-Active: areacap=0.9FF/um^2, edgecap=0.0FF/um, res=2.5ohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| *** N-Active: areacap=0.9FF/um <sup>2</sup> 2, edgecap=0.0FF/um, res=3.00hm/sg<br>*** Polytilicop=1 arpacene0.1467EF/um <sup>2</sup> 2, edgecap=0.060FF/um, reg=6.20hm/sg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Torystricon 1. areacap-0.140/11/dm z, eugecap-0.000011/dm, res-0.201ms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| *** Polysilicon-2: areacap=1.0FF/um^2, edgecap=0.0FF/um, res=50.0ohms/sq<br>*** Transistor-Poly: areacap=0.09FF/um^2, edgecap=0.0FF/um, res=2.50hms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| *** Poly-Cut: areacap-0.0FF/um^2, edgecap=0.0FF/um, res=2.20hms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| *** Active-Cut: areacap-0.0FF/um 2, edgecap=0.0FF/um, res=2.50hms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| *** Metal-1: areacap=0.1209FF/um^2, edgecap=0.1104FF/um, res=0.078ohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| *** Vial: areacap=0.0FF/um^2, edgecap=0.0FF/um, res=1.0ohms/sg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| *** Metal-2: areacap=0.0843FF/um^2, edgecap=0.0974FF/um, res=0.078ohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| *** Via2: areacap=0.0FF/um^2, edgecap=0.0FF/um, res=0.sohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Hetai-5, areacap-6,0645ff/um z, eugecap-6,05/4ff/um, res-6,0766fms/3q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| *** Via3: areacap=0.0FF/um <sup>2</sup> , edgecap=0.0FF/um, res=0.3ohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| *** Via4: areacap=0.00F/um2, edgecap=0.0F/um, res=0.80hm3/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| *** Metal-5: areacap-0.0843FF/um <sup>2</sup> , edgecap=0.0974FF/um, res=0.078ohms/sg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| *** Via5: areacap=0.0FF/um^2, edgecap=0.0FF/um, res=0.8ohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| *** Metal-6: areacap=0.0423FF/um^2, edgecap=0.1273FF/um, res=0.036ohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| *** Hi-Res: areacap=0.0FF/um^2, edgecap=0.0FF/um, res=1.0ohms/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| *** TOP LEVEL CELL: 16-to-1-Mux-TG(lay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Mnmos@40 net@963 net@909#3nmos@40_poly-left D0 gnd NMOS L=0.35U W=1.75U AS=1.991P AD=1.991P PS=5.775U PD=5.775U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Mnmos@41 net@963 S0#Onmos@41_poly-left D1 gnd NMOS L=0.35U W=1.75U AS=1.991P AD=1.991P PS=5.775U PD=5.775U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Mnmos@42_net@909ilesmos@42_poly-right D2_gnd NMOS_L-0.35U W=1.75U AS=1.991P AD=1.991P PS=5.775U PD=5.775U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Mmmos43 net6931 S0∲14nmos43 poly-left D3 gnd NMOS L=0.350 №=1.750 AS=1.991P AD=1.991P PS=5.7750 PD=5.7750<br>Mmmos44 net6962 net6930 net6930 net693 and NMOS L=0.350 №1.750 AS=1.991P AD=1.991P AD=1.991P PS=5.7750 PD=5.7750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Minioseva netesso netesso signa ando 1-0.500 m-1.750 ks-1.751 ks-1.551 ks-1 |       |
| Mnmose46 net@930#4contact@a68 metal-1-metal-2 SI46pin@316 polysilicon-1 gnd gnd MNOS L=0.35U W=1.75U AS=15.772P AD=1.991P PS=43.4U PD=5.775U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Mnmos@47 net@909#10contact@360 metal-1-n-act S0#8nmos@47 poly-right gnd gnd NMOS L=0.350 W=1.750 AS=15.772P AD=1.991P PS=43.40 PD=5.7750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| Mnmos048 net01144 net01090#3nmos048_poly-left D4 gnd NMOS L=0.350 W=1.750 AS=1.991P AD=1.991P PS=5.7750 PD=5.7750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Mnmos@49 net@1144 S0#18nmos@49_poly=left D5 gnd NMOS L=0.35U W=1.75U AS=1.991P AD=1.991P PS=5.775U PD=5.775U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Mnmos@50 net@1112 net@1090#18nmos@50 poly-right D6 gnd NMOS L=0.35U W=1.75U AS=1.991P AD=1.991P PS=5.775U PD=5.775U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| Mmmos651 net81112 S0#32nmos651 poly-left D7 qnd NNOS L=0.350 W=1.750 AS=1.991P AD=1.991P AD=5.7750 HD=5.7750 Mmmos652 net81111 net8114 qnd NNOS L=0.350 W=1.750 AS=1.991P AD=1.991P PS=5.7750 HD=5.7750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Mmmoses2 neteilas neteilas neteila da mos L=0.50 w=1.750 k=1.991r AL=1.991r K=5-3.770 rD=5.7750 rD=5.7750 https://sites.org/alignmoses2 neteilas site/anassis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Immoses heteliii detiid Strimoses potriete heterii gina anso in color and into and intro and interii terii detiid strimose and interii detiid strimose and interiii detiid |       |
| Mnmos@55 net@100#10contact@426 metal-1-n-act S0#26nmos@55 poly-right gnd MMOS L=0.35U W=1.75U AS=15.772P AD=1.991P PS=43.4U PD=5.775U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Mnmos@56 net@1273 net@1276#15nmos@56_poly-left D8 gnd NMOS_L=0.35U W=1.75U AS=1.991P AD=1.991P PS=5.775U PD=5.775U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| Mnmos@57 net@1273 S0#70nmos@57_poly-Teft D9 gnd NMOS L=0.35U W=1.75U AS=1.991P AD=1.991P PS=5.775U PD=5.775U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Mnmos@58 net@1327 net@13276#12nmos@58 poly-right D10 gnd NMOS L-0.35U W=1.75U AS=1.991P AD=1.991P PA=5.775U PD=5.775U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Mmmos69 net81327 S0#46mmos69 poly-left D11 and NMOS L=0.35U ₩=1.75U A5=1.991P AD=1.991P PS=5.775U PD=5.775U<br>Mmmos660 net81554 net81271#6mmos60 poly-left net81273 and NMOS L=0.35U ₩=1.75U A5=1.991P AD=1.991P PS=5.775U PD=5.775U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Mnmos860 net81594 net812/1#onmos860 poly-left net812/3 gnd NMOS L=0.350 W=1.750 AS=1.991P AD=1.991P AS=5.750 PD=5.750 PD=5.750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ¥     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |

Figure 33: Generated Spice Deck of Transmission Gate 16-to-1 Multiplexer Layout

| 9 LTspice XVII - [16-to-1-Mux-TG.spi]                                                                       | - 0 × |
|-------------------------------------------------------------------------------------------------------------|-------|
| 🖹 File Edit Wiew Simulate Iools Window Help                                                                 | - 1 x |
| ▶■■ 予孝しののの思議に回帰る」をも命論は「○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○                                                 |       |
| 🖩 1640-1-Mux-TG.spi 🗎 16-10-1-Mux-TG.spi                                                                    |       |
| ** Extracted Parasitic Capacitors ***                                                                       | ^     |
| C0 net@963 0 9.104fF                                                                                        |       |
| C1 D0 0 7.118fF                                                                                             |       |
| C2 D1 0 6.994fF                                                                                             |       |
| C3 net0931_0_8.084fF                                                                                        |       |
| C4 D2 0 7.043±F                                                                                             |       |
| C5 D3 0 7.02fF<br>C6 neL8962 0 11.492[F                                                                     |       |
|                                                                                                             |       |
| C7 net0930#4contact0360_metal=1=metal=2_0_14.629fF<br>C8_net0909#5contact0366_metal=1=metal=2_0_8.259fF     |       |
| Conce909#scontacteson metal-1-metal-2 0 0.2391F<br>Conce8090#10contacte366 metal-1-n-act 0 4.714fF          |       |
| C10 S0#4contact@362 metal=1=n=act 0 4.7141F                                                                 |       |
| Cli S1#8contact@3/2 metal-1-metal-2 0 0.813fF                                                               |       |
| C12 note1144 0 9,107FF                                                                                      |       |
|                                                                                                             |       |
| C14 D5 0 6.994fF                                                                                            |       |
| C15 net@1112 0 8.084fF                                                                                      |       |
| C16 D6 0 7.043FF                                                                                            |       |
| C17 D7 0 7.021F                                                                                             |       |
| C10 net@1143 0 17.199fF                                                                                     |       |
| C19 net@1111#4contact@434_metal=1-metal=2 0 14.629fF                                                        |       |
| C20 net@1090#5contact@432 metal=1-metal=2 0 8.259fF                                                         |       |
| C21 net@1090#10contact@426_metal-1-n-act 0 4.714fF                                                          |       |
| C22 S0#22contact0428_metal=1-metal=2 0 16.852fF                                                             |       |
| C23 S1#21contact0438 metal-1-metal-2 0 15.152fF                                                             |       |
| 224 net01273 0 9.104CF                                                                                      |       |
| C25 D8 0 7.118fF<br>C26 D9 0 6.994fF                                                                        |       |
| (22) http://www.com/arc/arc/arc/arc/arc/arc/arc/arc/arc/arc                                                 |       |
| C28 bito 7.043/F                                                                                            |       |
| C29 D11 0 7.02FF                                                                                            |       |
| C30 nct#1594 0 16.809fF                                                                                     |       |
| C31 neL01271 0 14.629[F                                                                                     |       |
| C32 net@1276 0 8.259fF                                                                                      |       |
| C33 net@1276#2contact@492 metal=1=n=act 0 4.714fF                                                           |       |
| C34 S0#36contact0494 metaT-1-meta1-2 0 16.819fF                                                             |       |
| C35 S1#29contact0504 metal-1-metal-2 0 15.194fF                                                             |       |
| C36 net@1414 0 9.104TF                                                                                      |       |
| C37 D12 0 7.118fF                                                                                           |       |
| C38 D13 0 6.994 FF                                                                                          |       |
| C39 net@1382 0 8.084fF                                                                                      |       |
| C40 D14 0 7.043fF                                                                                           |       |
| C41 D15 0 7.02fF<br>C42 neL01413 0 11.492fF                                                                 |       |
| C42 net@1413 0 11.4921F<br>C43 net@1381#4contact@566 metal=1-metal=2 0 14.6291F                             |       |
| C43 net#1360#Econtact@564 metal=1-metal=2 0 14.02918<br>C44 net#1360#Econtact@564 metal=1-metal=2 0 8.259fF |       |
| C45 nete1360#100ntacte558 meta1-1-n-act 0 4.714fF                                                           |       |
| C46 S0 011.814fF                                                                                            |       |
|                                                                                                             | ×     |
|                                                                                                             |       |

Figure 34: Extracted Parasitic Capacitors Sample of Transmission Gate 16-to-1 Multiplexer Layout

| 9 LTspice XVII - [16-to-1-Mux-TG.spi]                                                                                                            | – a × |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 🖹 File Edit View Simulate Tools Window Help                                                                                                      | - # x |
| ▶ ● ■ ■ 全体 「「「「」」」 「「」」 「「」」 「「」」 「」」 「」」 「」」 「」」                                                                                                |       |
| E 16-to-1-Mux-TG.spi                                                                                                                             |       |
| ** Extracted Parasitic Resistors ***                                                                                                             | ~     |
| R0 S0#0nmos@41 poly-left S0#0nmos@41 poly-left##0 9.688                                                                                          |       |
| R1 S0#Onmos041 poly-left##0 S0#Onmos041 poly-left##1 9.688                                                                                       |       |
| R2 S0#0nmos041 poly-left##1 S0#0nmos041 poly-left##2 9.688                                                                                       |       |
| R3 S0#Onmos@41 poly-left##2 S0#1pin@333 polysilicon-1 9.688                                                                                      |       |
| R4 net@909 net@909##0 9.858                                                                                                                      |       |
| R5 net@909##0 net@909##1 9.858                                                                                                                   |       |
| R6 net@909##1 net@909##2 9.858                                                                                                                   |       |
| R7 net@909##2 net@909##3 9.858                                                                                                                   |       |
| R8 net@909##3 net@909##4 9.858                                                                                                                   |       |
| R9 met#909##4 met#909##5 9.858<br>R10 met#909##5 met#909##6 9.858                                                                                |       |
| RID nete909##6 nete909##6 9.858                                                                                                                  |       |
| R11 nete909##7 nete909##7 9.556                                                                                                                  |       |
| R13 nete909##0 nete909##0 9.856                                                                                                                  |       |
| R14 nete909##9 nete909##1 0.9.658                                                                                                                |       |
| R15 net8909##10 net8909##11 9.858                                                                                                                |       |
| R16 net@909##11 net@909##12 9.858                                                                                                                |       |
| R17 net@909##12 net@909##13 9.858                                                                                                                |       |
| R18 net@909##13 net@909##14 9.858                                                                                                                |       |
| R19 net0909##14 net0909##15 9.858                                                                                                                |       |
| R20 net0909##15 net0909##16 9.858                                                                                                                |       |
| R21 net0909##16 net0909##17 9.858                                                                                                                |       |
| R22 net@909##17 net@909##18 9.858                                                                                                                |       |
| R23 net@909##18 net@909##19 9.858                                                                                                                |       |
| R24 net@909##19 net@909##20 9.858                                                                                                                |       |
| R25 net@909##20 net@809##21 9.858                                                                                                                |       |
| R26 net@909##21 net@909##22 9.658                                                                                                                |       |
| R27 net8909##22 net8909##23 9.858<br>R28 net8909##23 net8909#i2ine2809#i2ine330 polysilicon-1 9.858                                              |       |
| rz∂ nete909≢#z.s nete909≢fDine320_porysilicon-1 9.858<br>R29 nete909≢2pmose41 poly-left nete909#2pmose41 poly-left≢#0 9.688                      |       |
| RZS HELESUS#ZEJMUSE41_DOIY-LEIL HELESUS#ZEJMUSE41_DOIY-LEIL##0 5.000<br>RZS HELESUS#ZEJMUSE41_DOIY-LEIT##10 HELESUS#ZEJMUSE41_DOIY-LEIL##1 9.688 |       |
| R31 nete959#2pmos@d1 poly-left##1 nete909#2pmos@d1 poly-left##2 9.688                                                                            |       |
| N31 nete90942pm0841 poly-left##1 nete909 9.688                                                                                                   |       |
| R33 net@909#3nmos@40 poly-left net@909#3nmos@40 poly-left##0 9.688                                                                               |       |
| R34 net@909#3nmos@40 polv-left##0 net@909#3nmos@40 polv-left##1 9.688                                                                            |       |
| R35 net@909#3nmos@40 polv-left##1 net@909#3nmos@40 polv-left##2 9.688                                                                            |       |
| R36 net@909#3nmos@40 poly-left##2 net@909#4pin@335 polysilicon-1 9.688                                                                           |       |
| R37 net@909 met@909##0 9.743                                                                                                                     |       |
| R38 net0909##0 net0909##1 9.743                                                                                                                  |       |
| R39 net0909##1 net0909##2 9.743                                                                                                                  |       |
| R40 net@909##2 net@909##3 9.743                                                                                                                  |       |
| R41 net@909##3 net@909##4 9.743                                                                                                                  |       |
| R42 net@909##4 net@909##5 9.743                                                                                                                  |       |
| R43 net@909##5 net@909#4pin@335_polysilicon-1 9.743                                                                                              |       |
| R44 net@909#5contact@366 metal-1-metal-2 net@909#5contact@366 metal-1-metal-2##0 9.3                                                             |       |
| R45 net8909#55contact@366 metal-1-metal-2##0 net8909#5contact@366 metal-1-metal-2##1 9.3                                                         |       |
| R46 net0909#5contact0366 metal-1-metal-2##1 net0909#5contact0366 metal-1-metal-2##2 9.3                                                          |       |

Figure 35: Extracted Parasitic Resistors Sample of Transmission Gate 16-to-1 Multiplexer

Layout

#### Section 7: LTSPICE Simulations:

After creating the schematic and layout design of the 16-to-1 Multiplexer, waveforms were created using LTSPICE. Theses waveforms were created by using Spice Code (Figure 27) to initialize our VDD, GND, and our many inputs, D0-D15, and S0-S3, so that it could test certain computations. The computations that we tested set each input (D0-D15) for 50 nanoseconds at different times, then back to low; in other words, 100 nanoseconds period, with rise time and fall time of 5 nanoseconds and 50% duty cycle. Each of the inputs were high at different times so they wouldn't be able to relate to each other. After that, we set tested all the computations for the selector (S0-S3), starting from 0 to 15. This way, it'll be able to output each individual input and show a wavelike output. The computations that it tested are the same between the schematic and layout. We were able to verify the waveforms obtained from LTSPICE were correct by matching it with the truth table on Table 1.

## Section 7.1: Schematic:

For the schematic, we tested both conventional 16-to-1 Multiplexer, and Transmission Gates 16-to-1 Multiplexer. We could confirm that it works by viewing the inputs and confirming that the output shows a wavelike form.

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lispice XVII - [16-to-1-Muxspi]<br>Ele View Plot Settings Simulatio<br>Plat G Spick A & G & K Pris<br>1 16 po Antar Spice - 1-Mux p) | n Iools Wind | dow <u>H</u> elp<br>Mana ana ana ana ana ana ana ana ana ana | 1 冬 卓 子 文 ひ 徳 | ୧୯ <b>୩</b> ୯ଲିଲିକ | AP. |   |   |   |   |   |   |   |   | - 6 ×    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------|---------------|--------------------|-----|---|---|---|---|---|---|---|---|----------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.74-10                                                                                                                              | Ŭ            | 0                                                            | 0             | 0                  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7v- 0 1                                                                                                                            | ~            | 0                                                            | 0             | 0                  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      | 1            | 0                                                            | 0             | 0                  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        |
| 1.74       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                                                                                                                                      | 0            | 1                                                            | 0             | 0                  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        |
| 1.7v-000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.7V- 0 0                                                                                                                            | 0            | 0                                                            | 1             | 0                  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                      | 0            | 0                                                            | 0             | 1                  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                      | 0            | 0                                                            | 0             | 0                  | 1   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.7V <b>OO</b>                                                                                                                       | <u> </u>     | <u> </u>                                                     |               | <u> </u>           |     | 1 | 0 | 0 |   | 0 | 0 | 0 | 0 | <b>О</b> |

Figure 36.1: LTSPICE Waveforms of Schematic Design of a 16-to-1 Multiplexer (Inputs)

| Lispice XVII - [16-to-1-Muxs<br>Elle View Plot Settings | Simulation Tools V | Mindow <u>H</u> elp<br>anci <b>na</b> ⊟ /→ | →田く中 3 本ひぐ | ୬ଅ <b>୩</b> ୯ଲିଲି | de ap |   | V(d8)             |   |       |   |       |   |       | - 0 × |
|---------------------------------------------------------|--------------------|--------------------------------------------|------------|-------------------|-------|---|-------------------|---|-------|---|-------|---|-------|-------|
| 1.7V- 0 0                                               | 0                  | 0                                          | 0          | 0                 | 0     | 0 | 1                 | 0 | 0     | 0 | 0     | 0 | 0     | 0     |
| <sup>1.7v</sup> 0 0                                     |                    | 0                                          | 0          | 0                 | 0     | 0 | 0                 | 1 | 0     | 0 | 0     | 0 | 0     | 0     |
|                                                         |                    | 0                                          | 0          | 0                 | 0     | 0 | /(d10)<br>0       | 0 | 1     | 0 | 0     | 0 | 0     | 0     |
|                                                         |                    | 0                                          | 0          | 0                 | 0     | 0 | 0                 | 0 | 0     | 1 | 0     | 0 | 0     | 0     |
|                                                         |                    | 0                                          | 0          | 0                 | 0     | 0 | 0                 | 0 | 0     | 0 | 1     | 0 | 0     | 0     |
| 1.7V- 0 0                                               |                    | 0                                          | 0          | 0                 | 0     | 0 | 0                 | 0 | 0     | 0 | 0     | 1 | 0     | 0     |
| 1.7V-000                                                | 014                | 0                                          | 0          | 0                 | 0     | 0 | <sup>/(d14)</sup> | 0 | 0     | 0 | 0     | 0 | 1     | 0     |
| <sup>1.7v</sup> 0 0                                     | 0                  | 0                                          | 0          | 0                 | 0     | 0 | <sup>/(d15)</sup> | 0 | 0     | 0 | 0     | 0 | 0     | 1     |
| 0.0V-<br>0.0µs                                          | 0.2µs              |                                            | 0.4µs      |                   | 0.6µs |   | 0.8µs             |   | 1.0µs |   | 1.2µs | , | 1.4µs | 1.6µs |

Figure 36.2: LTSPICE Waveforms of Schematic Design of a 16-to-1 Multiplexer (Inputs)



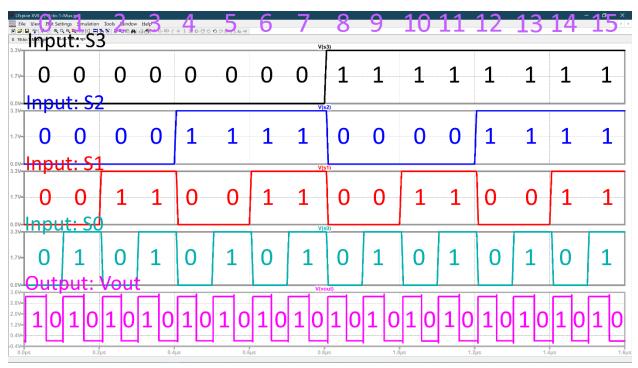



Figure 37: LTSPICE Waveforms of Schematic Design of a Conventional 16-to-1 Multiplexer (Outputs)

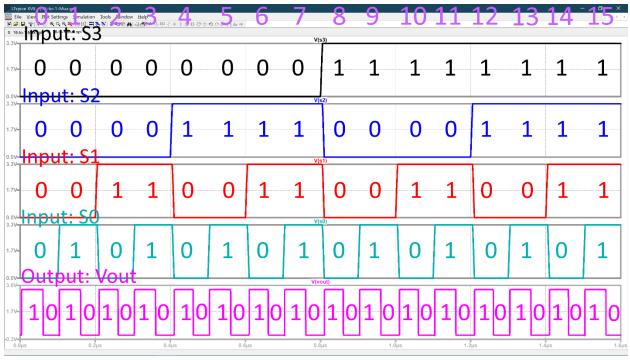



Figure 38: LTSPICE Waveforms of Schematic Design of a Transmission Gate 16-to-1 Multiplexer (Outputs)

## Section 7.2: Layout:

For the layout, we tested both conventional 16-to-1 Multiplexer, and Transmission Gates 16-to-1 Multiplexer. We could confirm that it works by viewing the inputs and confirming that the output shows a wavelike form.

| 10.0                    | 16-to-1-Mux-TG.spi]<br>Plot Settings Simulat | ion Iools Wir<br>마이 사용 | dow Help<br>하려고 하루는 영 | D <> ÷ 3 文1D 신 | 900684 | t ap  |   | V(d0) |   |       |   |       |   |       | - 0 × |
|-------------------------|----------------------------------------------|------------------------|-----------------------|----------------|--------|-------|---|-------|---|-------|---|-------|---|-------|-------|
| 3.3V<br>1.7V-1          | 0                                            | 0                      | 0                     | 0              | 0      | 0     | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0     | 0     |
| 1.7V <b>- O</b>         | 1                                            | 0                      | 0                     | 0              | 0      | 0     | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0     | 0     |
| 1.7V- 0                 | 0                                            | 1                      | 0                     | 0              | 0      | 0     | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0     | 0     |
| 1.7V-                   | 0                                            |                        | 1                     | 0              | 0      | 0     | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0     | 0     |
|                         |                                              |                        | 0                     | 1              | 0      | 0     | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0     | 0     |
| 3.3V<br>1.7V- <b>O</b>  |                                              | 0                      | 0                     | 0              | 1      | 0     | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0     | 0     |
| 3.3V-<br>1.7V-<br>0.0V- |                                              | 0<br>_0                | 0                     | 0              | 0      | 1     | 0 | V(d6) | 0 | 0     | 0 | 0     | 0 | 0     | 0     |
| 1.7V-0                  | 0                                            | 0                      | 0                     | 0              | 0      | 0     | 1 | 0     | 0 | 0     | 0 | 0     | 0 | 0     | 0     |
| 0.0V-<br>0.0µs          | (                                            | ).2µs                  | (                     | 0.4µs          |        | 0.6µs |   | 0.8µs |   | 1.0µs |   | 1.2µs |   | 1.4µs | 1.6µ  |

Figure 39.1: LTSPICE Waveforms of Layout Design of a 16-to-1 Multiplexer (Inputs)

| LTspice XVII - [16<br>Eile View Plo |            | on Tools Wir | dow Help                        |           |                 |       |          |        |   |       |   |       |    |       | - 0 × |
|-------------------------------------|------------|--------------|---------------------------------|-----------|-----------------|-------|----------|--------|---|-------|---|-------|----|-------|-------|
| 1nn                                 | ut:D8      | 833 X 201    | 8 <b>8</b>   2 <b>8</b>   2 4 4 | )くキ } 空むぐ | 90 <b>0</b> 066 | ta sp |          |        |   |       |   |       |    |       |       |
| 3.3V                                | -          | ,<br>        | •                               | •         | •               | •     | •        | V(d8)  | • | •     | • | •     | •  | •     | •     |
| 1.7٧                                | 0          | 0            | 0                               | 0         | 0               | 0     | -0-      | 11     | 0 | 0     | 0 | 0     | 0  | 0     | 0     |
| <sup>0.0V</sup>                     | ut:D       | )            |                                 |           |                 |       |          | V(d9)  |   |       |   |       |    |       |       |
| 1.7V-                               | 0_         | Q            | 0                               | 0         | 0               | 0     | 0        | 0      | 1 | 0     | 0 | 0     | 0  | 0     | 0     |
| 0.0V np                             | ut:D       | 10           |                                 |           |                 |       | <u> </u> | (d10)  |   |       |   |       |    |       |       |
| 1.7V                                | 0          | 0            | 0                               | 0         | 0               | 0     | 0        | 0      | 0 | 1     | 0 | 0     | 0  | 0     | 0     |
| 3.3V                                |            |              |                                 |           |                 |       | N        | /(d11) |   |       |   |       |    |       |       |
| 1.7V                                |            | ρ            | 0                               | 0         | 0               | 0     | 0        | 0      | 0 | 0     | 1 | 0     | 0  | 0     | 0     |
| 3.3V                                | ut.D.      | . 2          |                                 |           |                 |       | <u>`</u> | ((d12) |   |       |   |       |    |       |       |
| 1.7V <b>O</b>                       |            | _Q           | 0                               | 0         | 0               | 0     | 0        | 0      | 0 | 0     | 0 | 1     | 0  | 0     | 0     |
| 3.3V                                | 0          |              | 0                               | 0         |                 | 0     | 0        | ((d13) |   | 0     |   | 0     |    | 0     | 0     |
| 1.7V- <b>O</b>                      | U<br>ut·D1 | 4            | 0                               | 0         | 0               | 0     | 0        | 0      | 0 | 0     | 0 | 0     | 11 | 0     | 0     |
| 3.3V                                |            | . <u> </u>   | 0                               | 0         | 0               | 0     | -        | ((d14) | 0 | 0     | 0 | 0     | 0  | 11    | 0     |
| 1.7V-                               |            | U            | 0                               | 0         | U               | U     | 0        | U      | U | 0     | 0 | 0     | 0  |       | 0     |
| 3.3V                                |            | 5            | ~                               | ~         | ~               | •     | ~        | (d15)  | ~ | _     | ~ | ~     | ~  |       |       |
| 1.71                                | U          | 0            | 0                               | 0         | 0               | 0     | 0        | 0      | 0 | 0     | 0 | 0     | 0  | 0     | 1     |
| 0.0V=<br>0.0µs                      | 0          | .2µs         |                                 | ).4µs     |                 | 0.6µs |          | 0.8µs  |   | 1.0µs |   | 1.2µs |    | 1.4µs | 1.6µs |

Figure 39.2: LTSPICE Waveforms of Layout Design of a 16-to-1 Multiplexer (Inputs)



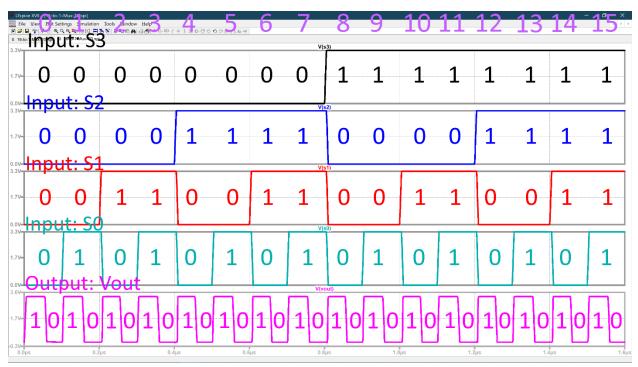



Figure 40: LTSPICE Waveforms of Layout Design of a Conventional 16-to-1 Multiplexer (Outputs)

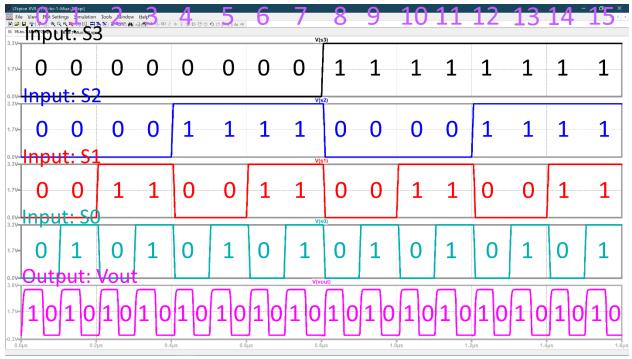



Figure 41: LTSPICE Waveforms of Layout Design of a Transmission Gate 16-to-1 Multiplexer (Outputs)

#### Section 7.3: Comparison:

For LTSPICE, by comparing Figure 37 (Conventional Schematic), Figure 38 (Transmission Gate Schematic), Figure 40 (Conventional Layout), and Figure 41 (Transmission Gate Layout) with each other, the way the output reacted given the certain inputs appears to be the same. In addition, with the inputs we gave, it gave us the appropriate outputs that we were looking for, so it confirms that our design is correct. The outputs that we were looking from could be seen by using the truth table on Table 1. The only noticeable difference between the figures would be the propagation delay and the way the waveforms looked, which could be seen on Table 6. For Figure 37, the output almost looks like a perfect square waveform, with similar rise and fall times; it has some parts where it peaks up. For Figure 38, the output waveform appears to have a longer fall time but appear as almost like a perfect square waveform. For Figure 40, the output waveform appears to have a longer rise time and fall time, but still appear as a square waveform (a bit curvier). For Figure 41, the output waveform appears to have a really long rise time and fall time, but still appears as a square waveform (a lot more curvier); this is probably because of the long rise time and fall time, which causes it to not stay high for very long before it has to go back to low. Depending on the which design, each has its own different propagation delay.

In conclusion, LTSPICE shows the same form of result towards Electric Schematic and Electric Layout with only a few noticeable differences. The difference that was seen through the figures were the rise time, fall time, and propagation delay. The differences can be viewed on Table 6, which has a summary of the measurements.

### Section 8: Measurement Summary:

The rise time, fall time, and propagation delay of gates of entire I/O are all shown on the table below, Table 6. It's found that for LTSPICE, the Schematic is faster compared to the Layout; the delay times are less, and it's rise and fall time are shorter. It's also found that for the IRSIM, the Schematic is faster compared to the Layout; the delay times are less. Furthermore, Table 7 provides more measurements for each of the designs, such as the transistor sizes, power dissipation, and total chip area. It's found that the transmission gate takes a lot less power and area compared to the conventional CMOS. This is because it uses less transistors compared to the conventional resulting in less power to power the transistors.

|                                     | Rise Time                               | Fall Time                             | Propagation Delay                                      |
|-------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------------------------|
| Conventional LTSPICE Schematic      | 103.54  ns -<br>103.42  ns = 0.12<br>ns | 158.92 ns -<br>158.72 ns = 0.20<br>ns | $T_{HL} = 1 \text{ ns},$<br>$T_{LH} = 0.90 \text{ ns}$ |
| Conventional LTSPICE Layout         | 104.70 ns -<br>104.20 ns= 0.50<br>ns    | 161.37 ns -<br>160.65 ns = 0.72<br>ns | $T_{HL} = 1.4 \text{ ns}$ $T_{LH} = 1.5 \text{ ns}$    |
| Conventional IRSIM Schematic        | N/A                                     | N/A                                   | Between 0.70ns -<br>1.55 ns                            |
| Conventional IRSIM Layout           | N/A                                     | N/A                                   | Between 0.85 ns-<br>1.60 ns                            |
| Transmission Gate LTSPICE Schematic | 105.20  ns -<br>101.20  ns = 4.00  ns   | 160.00 ns -<br>150.00 ns = 1.00<br>ns | $T_{HL} = 0.18 \text{ ns}$ $T_{LH} = 0.20 \text{ ns}$  |
| Transmission Gate LTSPICE Layout    | 110.00 ns -<br>101.00 ns = 9.00<br>ns   | 160.90 ns -<br>155.20 ns = 5.70<br>ns | $T_{HL} = 0.82 \text{ ns}$ $T_{LH} = 0.85 \text{ ns}$  |
| Transmission Gate IRSIM Schematic   | N/A                                     | N/A                                   | Between 0.50 ns -<br>1.20 ns                           |
| Transmission Gate IRSIM Layout      | N/A                                     | N/A                                   | Between 0.70 ns-<br>1.45 ns                            |

### Table 6: Summary of Measurements

|                   | Conventional       | Conventional               | Transmission     | Transmission               |
|-------------------|--------------------|----------------------------|------------------|----------------------------|
|                   | Schematic          | Layout                     | Gate Schematic   | Gate Layout                |
| Transistor Sizes  | PMOS (10/2),       | PMOS (10/2),               | PMOS (10/2),     | PMOS (10/2),               |
| (W/L)             | NMOS (5/2)         | NMOS (10/2)                | NMOS (5/2)       | NMOS (10/2)                |
| Transistor Counts | Inverter = 2       | 3-AND = 8                  | 4-to-1 = 16      | 4-to-1 = 16                |
|                   | AND = 6            | 4 - OR = 10                | 16-to-1 = (16*5) | 16-to-1 = (16*5)           |
|                   | 3-AND = 6 + 6 =    | Inverter = 2               | = 80             | = 80                       |
|                   | 12                 | 4-to-1 = (8*4) +           | Total = 80       | Total = 80                 |
|                   | OR = 6             | 10 + (2*2) = 46            |                  |                            |
|                   | 4 - OR = 6 + 6 + 6 | 16-to-1 = (46*5)           |                  |                            |
|                   | = 18               | = 230                      |                  |                            |
|                   | 4-to-1 = (4*12) +  | Total = 230                |                  |                            |
|                   | 18 + (2*2) = 70    |                            |                  |                            |
|                   | 16-to-1 = (70*5) = |                            |                  |                            |
|                   | 350                |                            |                  |                            |
|                   | Total = 350        |                            |                  |                            |
| Total Chip Area   | Х                  | 17126.1891 um <sup>2</sup> | Х                | 12288.4727 um <sup>2</sup> |
|                   |                    |                            |                  |                            |
| Power Dissipation | 3.3 V * 0.0032 A   | 3.3 V * 0.0044 A           | 3.3 V * 0.0023 A | 3.3 V * 0.0029 A           |
|                   | = 0.01056 Watts    | = 0.01452 Watts            | = 0.00759 Watts  | = 0.00957 Watts            |
|                   |                    |                            |                  |                            |

 Table 7: More Measurements

# <u>Calculations:</u>

Conventional: Size =  $1077.5 \lambda x 519 \lambda = 188562.5 \text{ nm} x 90825 \text{ nm} = 17126.1891 \mu m^2$ 

Transmission Gate: Size =  $387.5 \lambda x 1035.5 \lambda = 67812.5 \text{ nm } x 181212.5 \text{ nm} =$ 

 $12288.4727 \ \mu m^2$ 

#### Section 9: Conclusion:

In this project, we designed a CMOS of a 16-to-1 Multiplexer by connecting five 4-to-1 Multiplexers together. A conventional 4-to-1 Multiplexer is designed by connecting 4 three input AND gates, 1 four input OR gate, and two inverters together. A transmission gate 4-to-1 Multiplexer is designed by connecting six transmission gates, and two inverters together. By using the Electric software, we created four different designs, a conventional schematic design, a conventional layout design, a transmission gate (TG) schematic design, and a transmission gate (TG) layout design. We also generated waveforms using two different software, IRSIM and LTSPICE. The two different software helped support our design by increasing our test methods and providing us different test properties. After obtaining the waveforms for the four different design, we compared them and observe their similarities and differences. We observed that for LTSPICE and IRSIM, the input and output reacted the same way given certain inputs for both the Electric Schematic and for the Electric Layout; in addition, it matched the computed values and the goal we were trying to achieve. The only difference between the Electric Schematic and the Electric Layout were the rise time, fall time, and propagation delay. For LTSPICE and IRSIM, these forms of differences can be observed by checking out Table 6, Summary of Measurements. Another thing that we compared were the differences between conventional CMOS and transmission gates. Based off Table 7, it's found that transmission gates take less area and power compared to the conventional CMOS. This is because transmission gates are used to help simplify circuitry and because there's less transistors, there's less power needed to run all those transistors. Therefore, based on our observation and the data that was gathered, we can conclude that there isn't a significant difference in terms of the waveforms; however, there is a difference in the rise time, fall time and propagation delay when zooming in on the waveform. In addition, using transmission gates are more efficient compared to using regular convention CMOS because it saves on the amount of transistors, space, and power.

References:

[1] The CMOS Inverter Explained [Online] Available:

https://courseware.ee.calpoly.edu/~dbraun/courses/ee307/F02/02\_Shelley/Section2\_Basil Shelley.htm

[2] CMOS Gate Circuitry [Online] Available:

https://www.allaboutcircuits.com/textbook/digital/chpt-3/cmos-gate-circuitry/

[3] Transmission gate [Online] Available:

https://en.wikipedia.org/wiki/Transmission\_gate

- [4] *Logic AND gate Tutorial* [Online] Available: https://www.electronics-tutorials.ws/logic/logic\_2.html
- [5] Logic OR gate Tutorial [Online] Available:

https://www.electronics-tutorials.ws/logic/logic\_3.html

[6] *High performance, low power 200 Gb/s 4:1 MUX with TGL in 45 nm Technology* [Online] Available:

https://link.springer.com/article/10.1007/s13204-013-0206-0

[7] *Multiplexer (Mux)* [Online] Available:

https://en.wikichip.org/wiki/multiplexer

[8] Multiplexer [Online] Available:

https://en.wikipedia.org/wiki/Multiplexer

[9] The Multiplexer [Online] Available:

https://www.electronics-tutorials.ws/combination/comb\_2.html

[10] Spice3 User's Manual [Online] Available:

http://www.gianlucafiori.org/appunti/Spice\_3f3\_Users\_Manual.pdf