

Final Report Cover Sheet

Due: Monday 3:30PM – 5:45PM, 12/16/2019

PROJECT TITLE:	32-Bit Carry Look-Ahead Adder	

Group Name: _____ Team DK_____

Student Names: _____ Kevin Chen (Team Leader) & Darius San Agustin_____

You Check for completion here	Topics	GRADES
Required	Section1: Executive Summary	
\checkmark	Section 2: Introduction and Background	/5
\checkmark	Section 3: Electric Circuit Schematics	/10
\checkmark	Section 4: Detailed Electric Layouts	/25
✓	Section 5: IRSIM Logic Simulations and Measurements for Layout and Schematic (must provide comparisons between the two)	/10
✓	Section 6: LTSPICE code and parasitic extractions with calculation analysis. Put only samples of code.	/15
✓	Section 7: Measurements in LTSPICE for delays for Layout and Schematic (must provide comparisons between the two)	/15
✓	Section 8: Measurements of <u>power, delay, chip area,</u> <u>timing, number of transistors</u> for the layout. (If you are using TG, static or dynamic CMOS, compare here.)	/10
Required	Section 9: Conclusion and References	
Required	Presentation (Graded by students)	/10
	TOTAL	/100

Instructor Comments:

Table of Contents

Section 1: Executive Summary	
Section 2: Introduction and Background	4
Section 3: Electric Circuit Schematic	6
Section 4: Detailed Electric Layout	14
Section 5: IRSIM Logic Simulations and Measurements	
Section 5.1: Schematic	
Section 5.2: Layout	42
Section 5.3: Comparison	
Section 6: LTSPICE Code and Parasitic Extractions	47
Section 6.1: The SPICE Code	47
Section 6.2: Parasitic Analysis	55
Section 7: Measurements in LTSPICE for Delays	66
Section 7.1: Schematic	66
Section 7.2: Layout	70
Section 7.3: Comparison	72
Section 8: Measurement of Power, Chip Area, and Transistor Count	73
Section 8.1: Power Measurement	73
Section 8.2: Total Chip Area	73
Section 8.3: Total Transistor Count	74
Section 9: Conclusion	75
References	76

Section 1: Executive Summary

For this final project, we design and build a 32-bit Carry Look-Ahead adder. We use old components designed in Project 2—the inverter, NAND gate, XOR gate, and full adder—to realize this design. To do this, we first modify the full adder to output two signals, propagate (P) and generate (G), as opposed to the carry-out signal. These two signals are used in the Look-Ahead Carry Unit (LCU) modules that will compute the carry-in signals for all full adders in constant time. The constant-time computation of carry-in signals, as opposed to the rippling of them in the Ripple-Carry Adder design, is the essence of the Carry Look-Ahead Adder.

We then design C1, C2, and C3 modules that compute the carry-in signals for the latter three full adders. The carry-in signal for the first full adder is inputted directly from outside the circuit. This will realize a four-bit CLA design. But to scale up, we use another C3 module and a four-input AND gate (called the PG4 module) to output propagate and generate signals for the entire four-bit CLA.

We then use the four-bit CLA to build a 16-bit CLA, using four four-bit CLAs and the same LCU modules. We then use the 16-bit CLA to build up once again to the final circuit, the 32-bit Carry Look-Ahead Adder. As in previous projects, we verify the functionality of the design by performing numerical verifications—five additions and five two's complement subtractions—in IRSIM. We also measure the circuit's timing and other metrics using LTSPICE. Specifically, we measure the output rise time, fall time, and propagation delays for both schematic and layout, then compare their values. We also measure the total chip area, the total transistor count of the entire circuit, and the power dissipation of the circuit while it is in steady state (i.e. not switching).

Section 2: Introduction and Background

In this project, we will build a 32-bit Carry Look-Ahead adder. The purpose of using Carry Look-Ahead logic is to enable the circuit to calculate carry-input signals for all full adders at the same time, instead of waiting for the carry-out signal from one FA to ripple into the next. Because all carry signals are computed at the same time, this enables this circuit to perform binary addition faster than the Ripple-Carry Adder. Here, we see a phenomenon known as the Space-Time tradeoff, where we increase the physical space used by the circuit in order to decrease the time it takes for the circuit to perform its intended function [1].

To accomplish this design, we modify some of the circuits that we developed in the making of the 16-bit ripple carry adder. The main modification was made to the full adder. The sum bit is still computed, but since the carry-out of one FA no longer ripples into the next, that output was removed. Instead, the propagate P and generate G signals were computed. Both of these signals are used in the computation of carry-in signals for all full adders in an adder unit. Those signals have the below Boolean functions, where the subscript i refers to a specific full adder, where i = 0 for the first full adder [2].

$$P_i = A_i \bigoplus B_i = \overline{A_i}B_i + A_i\overline{B_i}$$
$$G_i = A_i \cdot B_i$$

These signals will be used by the Look-Ahead Carry Unit, or LCU, to determine the carry-in values for all full adders at the same time. The LCU is the bread and butter of this project, as it adds circuit complexity to perform binary additions faster. Given the carry input Cin into the first full adder, the below equations are used by the LCU to calculate the carry inputs for the other three full adders to build a 4-bit Carry Look-Ahead Adder [2].

$$C_{1} = G_{0} + P_{0}C_{in}$$

$$C_{2} = G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{in}$$

$$C_{3} = G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0}C_{in}$$

$$C_{4} = G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}P_{1}P_{0}C_{in}$$

Note that C4 is the carry-out signal of the entire four bit adder. It's not necessary to perform binary addition, so we did not implement it. Only the C1, C2, and C3 modules were implemented using two-input NAND gates and inverters from previous projects.

On top of those Boolean functions, we also implement and output the group propagate and group generate signals to allow us to scale up with these 4-bit adders [3].

$$P_G = P_3 P_2 P_1 P_0$$

$$G_G = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$$

Note that G_G is the same form as C3! We can easily implement G_G by reusing the module for C3. For P_G , we implement a simple four input AND gate using static CMOS design.

Now that our four-bit CLA module is complete, we can now use it to build a 16bit CLA. The same LCU modules are used here, and they take in the P_G and G_G outputs of each 4-bit CLA. And just as we calculated P_G and G_G for the four-bit adders, we also calculate it for the 16-bit adder.

With our 16-bit CLA module finished, we scale up once more to at 32-bit CLA. Because only two 16-bit CLA modules are used, only the C1 LCU module is required. Because this is the final stage, the Cin input is grounded, and G_G and P_G are not calculated. Only the G_G and P_G output of the first 16-bit CLA is used (for calculation of C1). The G_G and P_G outputs of the second 16-bit CLA are grounded, just like Cin. No carry-out bit is computed because detecting arithmetic overflow is out of the scope of this project. Therefore, the only inputs are the 32-bit A and B inputs. The only outputs are the 32 sum bits.

For this project, we have selected $W_N = 5\lambda$ and $W_P = 10\lambda$. We also keep the technology scale $\lambda = 175$ nm.

Section 3: Electric Circuit Schematic

In this section, we discuss the schematic of our 32-bit Carry Look-Ahead Adder, starting with its sub-components. Below are the NAND, inverter, and XOR schematics seen in previous projects.

Figure 1: Old Schematics - NAND (Top Left), Inverter without Wells (Top Right), XOR Gate (Bottom Left), Inverter with Wells (Bottom Right)

Below is the modified full adder that outputs the sum bit S, the propagate bit P, and the generate bit G.

Figure 2: Modified Full Adder Schematic

The modules used in creating the LCU are shown below. In order, they are the C1, C2, C3, and PG4 modules. Note that the PG4 module is simply a four-input static CMOS AND gate.

Figure 3: C1 Module Schematic

Figure 5: C3 Module Schematic

Figure 6: PG4 Module Schematic

Finally, four of these full adders, together with these LCU modules are used to create the four-bit carry look-ahead adder below.

Figure 7: 4-bit CLA Schematic

We then use the 4-bit CLA to scale up to a 16-bit adder, using the same LCU modules to make it possible. On the next page is the schematic.

Figure 8: 16-bit CLA Schematic

We scale up again to the final 32-bit adder. This time, we only need to use the C1 module to realize this design. Below is the schematic.

Figure 9: 32-bit CLA Schematic

On the next page is the transistor-only schematic of the 32-bit CLA, which does not use icons.

Figure 10: 32-bit CLA Schematic (Only Transistors)

Below are the schematic DRC checks of the highest level circuit (32-bit CLA). This DRC also performs the DRC checks for all the lower-level components. No errors are found.

Figure 11: 32-bit CLA Schematic DRC

Section 4: Detailed Electric Layout

For reference, the layouts of old components—the NAND gate, inverter, and XOR gate—are included below. Their checks will not be included, because their correctness has already been verified in previous projects.

Figure 12: Layouts of Old Components - NAND (Left), Well-less Inverter (Middle), Inverter with Well (Right)

Figure 13: Euler Graph (Right) and Stick Diagram (Left) of XOR Gate

Figure 14: Layout of XOR Gate

Below is the layout of the modified full adder. It is followed by the C1, C2, C3, and PG4 LCU modules. Each layout is accompanied by its respective DRC, ERC Well Check, and NCC output from the Electric logs. This is to verify that each component follows its respective schematic and all design rules.

Figure 15: Modified Full Adder Layout

Figure 17: C1 Module Layout

🕐 Electric Messages	-	×
Library /D:/Files/Darius%20Lance/Documents/EE457/CLA-64/cla64.jelib read, took 0.136 secs Checking library 'cla64' for repair library checked No errors found		^
Running DRC with area bit on, extension bit on, Mosis bit Checking again hierarchy (0.003 secs) Found 9 networks 0 errors and 0 warnings found (took 0.027 secs)		
Checking Wells and Substrates in 'cla64:cl{lay}' Geometry collection found 32 well pieces, took 0.005 secs Geometry analysis used 4 threads and took 0.004 secs NetValues propagation took 0.0 secs Checking short circuits in 6 well contacts Additional analysis took 0.003 secs No Well errors found (took 0.013 secs)		
Hierarchical NCC every cell in the design: cell 'cl{sch}' cell 'cl{lay}' Comparing: cla64:inv_well{sch} with: cla64:inv_well;l{lay} exports match, topologies match, sizes match in 0.027 seconds. Comparing: cla64:nand{sch} with: cla64:nand;l{lay} exports match, topologies match, sizes match in 0.004 seconds. Comparing: cla64:cl{sch} with: cla64:cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Summary for all cells: exports match, topologies match, sizes match NCC command completed in: 0.042 seconds.		
<		~

Figure 18: C1 Module Checks

Figure 19: C2 Module Layout

😢 Electric Messages —	[□ ×	
D:\Files\Darius Lance\Documents\EE457\CLA-64\cla64.jelib written		,	^
Running DRC with area bit on, extension bit on, Mosis bit			
Checking again hierarchy (0.0 secs)			
Found 14 networks			
0 errors and 0 warnings found (took 0.001 secs)			
Checking Wells and Substrates in 'cla64:c2{lay}'			
Geometry collection found 64 well pieces, took 0.0 secs			
Geometry analysis used 4 threads and took 0.002 secs			
NetValues propagation took 0.0 secs			
Checking short circuits in 12 well contacts			
Additional analysis took 0.0 secs			
No Well errors found (took 0.003 secs)			
33			
Hierarchical NCC every cell in the design: cell 'c2{sch}' cell 'c2{lay}'			
Comparing: cla64:inv_well{sch} with: cla64:inv_well;l{lay}			i
exports match, topologies match, sizes match in 0.001 seconds.			
Comparing: cla64:nand{sch} with: cla64:nand;l{lay}			
exports match, topologies match, sizes match in 0.001 seconds.			
Comparing: cla64:c2{sch} with: cla64:c2{lay}			
exports match, topologies match, sizes match in 0.001 seconds.			
Summary for all cells: exports match, topologies match, sizes match			
NCC command completed in: 0.003 seconds.			
			7
<		>	ł

Figure 21: C3 Module Layout

😢 Electric Messages	-	\times
NCC command completed in: 0.007 seconds.		^
Purping DDC with area bit on extension bit on Media bit		
Checking again bierarchy (0.0 secs)		
Found 10 networks		
Checking cell [c3(lay]]		
No arrore (warnings found		
0 errors and 0 warnings found (took 0 088 secs)		
Checking Wells and Substrates in 'cla64:c3{lav}'		
Geometry collection found 96 well pieces, took 0.001 secs		
Geometry analysis used 4 threads and took 0.001 secs		
NetValues propagation took 0.001 secs		
Checking short circuits in 18 well contacts		
Additional analysis took 0.0 secs		
No Well errors found (took 0.004 secs)		
10		
Hierarchical NCC every cell in the design: cell 'c3{sch}' cell 'c3{lay}'		- 1
Comparing: cla64:inv_well{sch} with: cla64:inv_well{lay}		
exports match, topologies match, sizes match in 0.001 seconds.		
Comparing: cla64:nand{sch} with: cla64:nand{lay}		
exports match, topologies match, sizes match in 0.002 seconds.		
Comparing: cla64:c3{sch} with: cla64:c3{lay}		
exports match, topologies match, sizes match in 0.002 seconds.		
Summary for all cells: exports match, topologies match, sizes match		
NCC command completed in: 0.008 seconds.		
		~
<		>

Figure 23: PG4 Module Layout

Figure 24: PG4 Module Checks

Note that the C3 module and PG4 module layouts use slightly different versions of the NAND and inverter layout. These alternate versions are slightly taller than their counterparts, creating more space between the pull-up network and the pull-down network. This was done to reduce wiring complexity and to allocate more room for connections to inputs. Below is the layout of the 4-bit CLA.

Figure 25: 4-bit CLA Layout (Rotated to show more room)

<pre>umming DRC with area bit on, extension bit on, Mosis bit hecking gain hierarchy (0.001 scs) Yound 29 networks hecking cell 'cla4(lay)' No errors/warnings found errors and 0 warnings found errors and 0 warnings found totok 0.432 secs) ====================================</pre>	Electric Messages	_	\times
<pre>uuning DRC with area bit on, extension bit on, Mosis bit hecking again hierarchy (0.001 secs) 'No errors/warings found 'errors and 0 warnings found (took 0.432 secs) </pre>	34		~
<pre>hecking again hierarchy (0.001 secs) found 29 networks No errors/warnings found errors and 0 warnings found fook 0.432 secs) ====================================</pre>	Running DRC with area bit on, extension bit on, Mosis bit		
<pre>bound 29 networks hecking cell 'cla4(lay)' No errors/warnings found errors and 0 warnings found (took 0.432 secs) ====================================</pre>	Checking again hierarchy (0.001 secs)		
<pre>hecking cell 'cla4{lay}' No errors/warnings found errors and o warnings found (book 0.432 secs) errors and 0 warnings found (book 0.432 secs) hecking Wells and Substrates in 'cla64:cla4[lay]' Geometry analysis used 4 threads and took 0.005 secs Geometry analysis used 4 threads and took 0.009 secs ievalues propagation took 0.002 secs hecking short circuits in 90 well contacts Additional analysis took 0.002 secs ho Well errors found (took 0.019 secs) errors found (took 0.019 seconds. fomparing: cla64:inny_well(sch) with: cla64:innd(lay) exports match, topologies match, sizes match in 0.00 seconds. fomparing: cla64:cl(sch) with: cla64:cl(lay) exports match, topologies match, sizes match in 0.001 seconds. fomparing: cla64:cl(sch) with: cla64:cl(lay) exports match, topologies match, sizes match in 0.001 seconds. fomparing: cla64:inv(sch) with: cla64:inv(lay) exports match, topologies match, sizes match in 0.001 seconds. fomparing: cla64:inv(sch) with: cla64:ror(lay) exports match, topologies match, sizes match in 0.001 seconds. fomparing: cla64:ror(sch) with: cla64:ror(lay) exports match, topologies match, sizes match in 0.001 seconds. fomparing: cla64:ror(sch) with: cla64:ror(lay) exports match, topologies match, sizes match in 0.001 seconds. fomparing: cla64:ror(sch) with: cl</pre>	Found 29 networks		
No errors/warnings found e errors and 0 warnings found (cook 0.432 secs) ====================================	Checking cell 'cla4{lay}'		
<pre>errors and 0 warnings found (took 0.432 secs) ====================================</pre>	No errors/warnings found		
<pre>hecking Wells and Substrates in 'cla64:cla64[ay]' Geometry collection found 652 well pices, took 0.005 secs Geometry analysis used 4 threads and took 0.009 secs HetValues propagation took 0.002 secs hecking short circuits in 90 well contacts Additional analysis took 0.002 secs lowell errors found (took 0.019 secs) </pre>	0 errors and 0 warnings found (took 0.432 secs)		
<pre>hecking Wells and Substrates in 'cla64:cla4{lay}' Geometry collection found 652 well pieces, took 0.005 secs Geometry analysis used 4 threads and took 0.009 secs WetValues propagation took 0.002 secs hecking short circuits in 90 well contacts Additional analysis took 0.002 secs to Well errors found (took 0.019 secs) </pre>	35		
<pre>Geometry collection found 652 well pieces, took 0.005 secs Geometry analysis used 4 threads and took 0.009 secs Hecking short circuits in 90 well contacts Additional analysis took 0.002 secs to Well errors found (took 0.019 secs) </pre>	Checking Wells and Substrates in 'cla64:cla4{lay}'		
Geometry analysis used 4 threads and took 0.009 secs letValues propagation took 0.002 secs hecking short circuits in 90 well contacts Additional analysis took 0.002 secs lo Well errors found (took 0.019 secs) 	Geometry collection found 652 well pieces, took 0.005 secs		
<pre>MetValues propagation took 0.002 secs hecking short circuits in 90 well contacts Additional analysis took 0.002 secs in the constant of the constant of the constant of the constant of the constant of well errors found (took 0.019 secs) interarchical NCC every cell in the design: cell 'cla4{sch}' cell 'cla4{lay}' imparing: cla64:iny_well{sch} with: cla64:iny_well{lay} exports match, topologies match, sizes match in 0.0 seconds. imparing: cla64:iny_well{sch} with: cla64:iny_well;[lay] exports match, topologies match, sizes match in 0.001 seconds. imparing: cla64:nand(sch) with: cla64:nand(lay] exports match, topologies match, sizes match in 0.001 seconds. imparing: cla64:inad(sch) with: cla64:nand(lay] exports match, topologies match, sizes match in 0.001 seconds. imparing: cla64:cl(sch) with: cla64:cl(lay] exports match, topologies match, sizes match in 0.001 seconds. imparing: cla64:cl(sch) with: cla64:cl(lay] exports match, topologies match, sizes match in 0.001 seconds. imparing: cla64:cl(sch) with: cla64:cl(lay) exports match, topologies match, sizes match in 0.001 seconds. imparing: cla64:cl(sch) with: cla64:cl(lay) exports match, topologies match, sizes match in 0.001 seconds. imparing: cla64:inv(sch) with: cla64:cl(lay) exports match, topologies match, sizes match in 0.001 seconds. imparing: cla64:inv(sch) with: cla64:cl(lay) exports match, topologies match, sizes match in 0.001 seconds. imparing: cla64:inv[sch] with: cla64:rul[adder[lay] exports match, topologies match, sizes match in 0.001 seconds. imparing: cla64:flu] adder[sch] with: cla64:flu] adder[lay] exports match, topologies match, sizes match in 0.001 seconds. imparing: cla64:flu] adder[sch] with: cla64:flu] adder[lay] exports match, topologies match, sizes match in 0.001 seconds. imparing: cla64:flu] adder[sch] with: cla64:flu] exports match, topologies match, sizes match in 0.001 seconds. imparing: cla64:flu] adder[sch] with: cla64:flu] exports match, topologies match, sizes match in 0.001 seconds. imparing: cla64:flu(sch] with: cla64:f</pre>	Geometry analysis used 4 threads and took 0.009 secs		
<pre>hecking short circuits in 90 well contacts Additional analysis took 0.002 secs too Well errors found (took 0.019 secs)</pre>	NetValues propagation took 0.002 secs		
Additional analysis took 0.002 sees No Well errors found (took 0.019 sees) Additional analysis took 0.002 sees Note: See See See See See See See See See S	Checking short circuits in 90 well contacts		
<pre>b Well errors found (took 0.019 secs) distriction of the second se</pre>	Additional analysis took 0.002 secs		
<pre>international and the second sec</pre>	No Well errors found (took 0.019 secs)		
<pre>Hierarchical NCC every cell in the design: cell 'cla4{sch}' cell 'cla4{lay}' comparing: cla64:inv_well{sch} with: cla64:inv_well{lay} exports match, topologies match, sizes match in 0.0 seconds. comparing: cla64:nand[sch] with: cla64:inv_well;l[ay] exports match, topologies match, sizes match in 0.0 seconds. comparing: cla64:nand[sch] with: cla64:nand;lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:nand[sch] with: cla64:nand;lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cl{sch} with: cla64:cl[lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cl{sch} with: cla64:cl[lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cl{sch} with: cla64:cl[lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cl{sch} with: cla64:cl[lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cl{sch} with: cla64:sl[lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:inv(sch) with: cla64:xor[lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:inv[sch] with: cla64:xor[lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:full_adder[sch] with: cla64:xor[lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:full_adder[sch] with: cla64:fill_adder[lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4[s</pre>			
<pre>comparing: cla64:inv_well(sch) with: cla64:inv_well[lay] exports match, topologies match, sizes match in 0.0 seconds. Comparing: cla64:inv_well(sch) with: cla64:inv_well;l[lay] exports match, topologies match, sizes match in 0.00 seconds. Comparing: cla64:nand(sch) with: cla64:nand[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:nand(sch) with: cla64:nand;l[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cl(sch) with: cla64:cl[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cl(sch) with: cla64:cl[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cl(sch) with: cla64:cl[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cl(sch) with: cla64:cl[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:inv(sch) with: cla64:inv[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:inv(sch) with: cla64:inv[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:xor[sch] with: cla64:xor[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:full_adder[sch] with: cla64:full_adder[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pd{sch] with: cla64:full_adder[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pd{sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64</pre>	Hierarchical NCC every cell in the design: cell 'cla4{sch}' cell 'cla4{lav}'		
<pre>exports match, topologies match, sizes match in 0.0 seconds. Comparing: cla64:inv_well{sch} with: cla64:inv_well;l{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:nand{sch} with: cla64:nand;lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:clannd[sch] with: cla64:nand;lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cl{sch} with: cla64:cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cl{sch} with: cla64:cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cl{sch} with: cla64:cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cl{sch} with: cla64:cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cl{sch} with: cla64:cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cl{sch} with: cla64:cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:inv{sch} with: cla64:inv{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:inv{sch} with: cla64:tnv{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:full_adder[sch] with: cla64:full_adder[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pd{sch} with: cla64:pd{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4(sch) with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4(sch) with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4(sch) with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4(sch] with: cla64:cla4[lay] exports match, topologies match, siz</pre>	Comparing: cla64:inv well{sch} with: cla64:inv well{lav}		
<pre>comparing: cla64:inv_well(sch) with: cla64:inv_well;[{ay} exports match, topologies match, sizes match in 0.0 seconds. Comparing: cla64:nand(sch) with: cla64:nand[ay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:nad(sch) with: cla64:nand;[{ay} exports match, topologies match, sizes match in 0.0 seconds. Comparing: cla64:cl[sch] with: cla64:cl[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:c2[sch] with: cla64:c2[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:c3[sch] with: cla64:c3[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:c3[sch] with: cla64:c3[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:inv[sch] with: cla64:rand[may] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:inv[sch] with: cla64:rand[may] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:xor[sch] with: cla64:xor[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:ful_adder[sch] with: cla64:ful_adder[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:ful_adder[sch] with: cla64:ful_adder[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4</pre>	exports match, topologies match, sizes match in 0.0 seconds.		
exports match, topologies match, sizes match in 0.0 seconds. Comparing: cla64:nand[sch] with: cla64:nand[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:nand[sch] with: cla64:nand;l[lay] exports match, topologies match, sizes match in 0.0 seconds. Comparing: cla64:cl[sch] with: cla64:cl[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:c2[sch] with: cla64:c2[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:c3[sch] with: cla64:c3[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:c3[sch] with: cla64:c3[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:inv[sch] with: cla64:inv[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:tinv[sch] with: cla64:tor[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:tinv[sch] with: cla64:tor[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:full_adder[sch] with: cla64:full_adder[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pq4[sch] with: cla64:pq4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4[sch] with: cla64:cla4[lay] export	Comparing: cladiiny welliget with: cladiiny wellijlay		
<pre>Chapter and the second of the second of</pre>	exports match, topologies match, sizes match in 0.0 seconds.		
<pre>exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:nand{sch} with: cla64:nand;l{lay} exports match, topologies match, sizes match in 0.00 seconds. Comparing: cla64:cl{sch} with: cla64:cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:c2{sch} with: cla64:c2{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:c3{sch} with: cla64:c3{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:c3{sch} with: cla64:c3{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:inv{sch} with: cla64:c3{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:xor{sch} with: cla64:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:xor{sch} with: cla64:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pg4{sch} with: cla64:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{sch} with: cla64:cla4{sch} with: cla64:cla</pre>	Comparing classing opportunits matching and the store of seconds.		
<pre>chpoids match, copologies match, sizes match in 0.001 seconds. Comparing: cla64:nand{sch} with: cla64:nand;l{lay} exports match, topologies match, sizes match in 0.0 seconds. Comparing: cla64:cl{sch} with: cla64:cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cl{sch} with: cla64:cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cl{sch} with: cla64:cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cl{sch} with: cla64:cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:inv{sch} with: cla64:inv{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:xor{sch} with: cla64:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch} with: cla64:cla4{lay} exports match, topologies match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch with: cla64:cla4sch in 0.001 seconds. Comparing: cla64:cla4sch with: cla64:cla4sch in 0.001 seconds. Comparing: cla64:cla4sch in 0.00</pre>	experiments match topologies match sizes match in 0.001 seconds		
<pre>comparing: Clade.name(sch) with: Clade.name, f(ray) exports match, topologies match, sizes match in 0.0 seconds. Comparing: clade.cl{sch} with: clade.cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.cl{sch} with: clade.cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.cl{sch} with: clade.cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.cl{sch} with: clade.cl{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.inv(sch) with: clade.inv(lay) exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.ixor{sch} with: clade.ixor{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.itul_adder{sch} with: clade.itul_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.itul_adder{sch} with: clade.itul_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.itul_adder{sch} with: clade.itul_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.itul_adder{sch} with: clade.itul_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.itul4(sch) with: clade.itul4(lay) exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.itul4(sch) with: clade.itul4(lay) exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.itul4(sch) with: clade.itul4(lay) exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.itul4(sch) with: clade.itul4(lay) exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.itul4(sch) with: clade.itul4(lay) exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.itul4(sch) with: clade.itul4(lay) exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade.itul4(sch) with: clade.itul4(sch) with: clade.itul4(sch) with: clade.itul4(sc</pre>	Comparing allowand (ach) with allowand (law)		
<pre>choics match, bopologies match, sizes match in 0.00 seconds. comparing: cla64:cl{sch} with: cla64:cl{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:c2{sch} with: cla64:c2{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:c3{sch} with: cla64:c3{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:inv{sch} with: cla64:inv{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:xor{sch} with: cla64:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:xor{sch} with: cla64:tor{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:pg4{sch} with: cla64:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4sch, with: cla64:cla4sch, sizes match in 0.001 seconds. comparing: cla6sch, sizes match, sizes match in 0.001 seconds. comparing: cla6sch, sizes match, sizes match in 0.001 seconds. comparing: cla</pre>	emparing. Clabs.nank(Sch) with. Clabs.nank, (1ag)		
<pre>comparing: Clade:Cl{Sch} with: Clade:Cl{Ay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:c2{sch} with: clade:c2{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:c3{sch} with: clade:c3{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:inv{sch} with: clade:c3{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:inv{sch} with: clade:c3{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:inv{sch} with: clade:ca{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:xor{sch} with: clade:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:full_adder{sch} with: clade:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:pg4{sch} with: clade:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:cla4{sch} with: clade:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:cla4{sch} with: clade:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:cla4{sch} with: clade:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:cla4{sch} with: clade:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:cla4{sch} with: clade:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:cla4{sch} with: clade:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:cla4{sch} with: clade:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: clade:cla4{sch} with: clade:cla4{sch} with: clade:cla4{sch} with: clade:cla4{sch} with; clade:clade; clade:clade; clade:clade; clade; clade;</pre>	exports match, topologies match, sizes match in 0.0 seconds.		
<pre>exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:c2{sch} with: cla64:c2{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:c3{sch} with: cla64:c3{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:inv{sch} with: cla64:inv{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:xor{sch} with: cla64:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pd{sch} with: cla64:pd{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:pd{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4:cla4:cla4:cla4; topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4:cla4:cla4:cla4; topologies match, sizes match in 0.001 seconds.</pre>	Comparing: Clack:Clisch with: Clack:Clilay}		
<pre>comparing: clade:c2(sch) with: clade:c2(lay) exports match, topologies match, sizes match in 0.001 seconds. comparing: clade:c3(sch) with: clade:c3(lay) exports match, topologies match, sizes match in 0.001 seconds. comparing: clade:ca(sch) with: clade:nv(lay) exports match, topologies match, sizes match in 0.001 seconds. comparing: clade:xor{sch} with: clade:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: clade:ca(sch) with: clade:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: clade:full_adder{sch} with: clade:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: clade:pg4(sch) with: clade:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: clade:cla4{sch} with: clade:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: clade:cla4{sch} with: clade:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: clade:cla4{sch} with: clade:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: clade:cla4{sch} with: clade:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: clade:cla4{sch} with: clade:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: clade:cla4{sch} with: clade:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: clade:cla4{sch} with: clade:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: clade:cla4[sch] with: clade:cla4{sch} with: clade:cla4{sch} with: clade:cla4{sch} with: clade:cla4{sch} with: clade:clade;cl</pre>	exports match, topologies match, sizes match in 0.001 seconds.		
<pre>exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:c3{sch} with: cla64:c3{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:inv{sch} with: cla64:inv{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:xor{sch} with: cla64:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pd{sch} with: cla64:gd{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pd{sch} with: cla64:pd4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch} with: cla64:cla4sch with: cla64:cla4sch with: cla64:cla4sch with: cla64:cla4sch with: cla64:cla4sch with; cla64:cla4sch wit</pre>	Comparing: Clade:C2[SCN] With: Clade:C2[Lay]		
<pre>comparing: cla64:c3(sch} with: cla64:c3(lay) exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:inv{sch} with: cla64:inv{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:xor{sch} with: cla64:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:pg4{sch} with: cla64:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4sch, with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4sch, with: cla64:cla4sch, sizes match in 0.001 seconds. comparing: cla64:cla4sch, sizes match, sizes match in 0.001 seconds. comparing: cla64:cla4sch, sizes match in 0.001 seconds. comparing: cla64:cla4sch, sizes match, sizes match in 0.001 seconds. comparing: cla64:cla4sch, sizes match, sizes match in 0.001 seconds. comparing: cla64:cla4sch, sizes match, sizes match in 0.001 seconds. comparing: cla64:cla4sch, sizes match in 0.001 seconds. comparing: cla64:cla4sch, sizes match in 0.001 seconds. comparing: cla64:cla4sch, sizes match in 0.001 seco</pre>	exports match, topologies match, sizes match in 0.001 seconds.		
<pre>exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:inv{sch} with: cla64:inv{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:xor{sch} with: cla64:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pg4{sch} with: cla64:gg4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Nummary for all cells: exports match, topologies match, sizes match, sizes match ICC command completed in: 0.016 seconds.</pre>	Comparing: Cla64:C3(SCN) With: Cla64:C3(lay)		
<pre>comparing: cla64:inv{sch} with: cla64:inv{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:xor{sch} with: cla64:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pg4{sch} with: cla64:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch with: cla64:cla4sch in 0.001 seconds. Comparing: cla64:cla4s</pre>	exports match, topologies match, sizes match in 0.001 seconds.		
<pre>exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:xor{sch} with: cla64:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pg4{sch} with: cla64:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Nummary for all cells: exports match, topologies match, sizes match ICC command completed in: 0.016 seconds.</pre>	Comparing: cla64:inv{sch} with: cla64:inv{lay}		
<pre>comparing: cla64:xor{sch} with: cla64:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pg4{sch} with: cla64:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4sch with: cla64:cla4sch in 0.001 seconds. Comparing: cla64:cla4sch in 0.001 seconds. Comparing</pre>	exports match, topologies match, sizes match in 0.001 seconds.		
<pre>exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pg4{sch} with: cla64:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Nummary for all cells: exports match, topologies match, sizes match ICC command completed in: 0.016 seconds.</pre>	Comparing: cla64:xor{sch} with: cla64:xor{lay}		
<pre>comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pg4{sch} with: cla64:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Nummary for all cells: exports match, topologies match, topologies match, sizes match in 0.001 seconds. CC command completed in: 0.016 seconds.</pre>	exports match, topologies match, sizes match in 0.001 seconds.		
exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pg4{sch} with: cla64:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Nummary for all cells: exports match, topologies match, sizes match ICC command completed in: 0.016 seconds.	Comparing: cla64:full_adder{sch} with: cla64:full_adder{lay}		
<pre>comparing: cla64:pg4{sch} with: cla64:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. commany for all cells: exports match, topologies match, sizes match CC command completed in: 0.016 seconds.</pre>	exports match, topologies match, sizes match in 0.001 seconds.		
exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Cummary for all cells: exports match, topologies match, sizes match NCC command completed in: 0.016 seconds.	Comparing: cla64:pg4{sch} with: cla64:pg4{lay}		
Comparing: cla64:cla4{sch} with: cla64:cla4{lay} exports match, topologies match, sizes match in 0.001 seconds. Summary for all cells: exports match, topologies match, sizes match NCC command completed in: 0.016 seconds.	exports match, topologies match, sizes match in 0.001 seconds.		
exports match, topologies match, sizes match in 0.001 seconds. Summary for all cells: exports match, topologies match, sizes match NCC command completed in: 0.016 seconds.	Comparing: cla64:cla4{sch} with: cla64:cla4{lay}		
Nummary for all cells: exports match, topologies match, sizes match NCC command completed in: 0.016 seconds.	exports match, topologies match, sizes match in 0.001 seconds.		
NCC command completed in: 0.016 seconds.	Summary for all cells: exports match, topologies match, sizes match		
	NCC command completed in: 0.016 seconds.		
			\checkmark
C >>	<		>

Figure 26: 4-bit CLA Checks

On the next page is the layout of the 16-bit CLA, along with a screenshot of all of its checks.

Figure 27: 16-bit CLA Layout

Х

_

🖳 Electric Messages

Checking cell 'clal6{lav}' ^ =39= Checking Wells and Substrates in 'cla64:cla16{lay}' ... Geometry collection found 2924 well pieces, took 0.011 secs Geometry analysis used 4 threads and took 0.024 secs NetValues propagation took 0.003 secs Checking short circuits in 418 well contacts Additional analysis took 0.0 secs No Well errors found (took 0.038 secs) No errors/warnings found 0 errors and 0 warnings found (took 1.11 secs) Hierarchical NCC every cell in the design: cell 'clal6{sch}' cell 'clal6{lay}' Comparing: cla64; inv well{sch} with: cla64; inv well; l{lav} exports match, topologies match, sizes match in 0.003 seconds. Comparing: cla64:inv_well{sch} with: cla64:inv_well{lay} exports match, topologies match, sizes match in 0.0 seconds. Comparing: cla64:nand{sch} with: cla64:nand{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:nand{sch} with: cla64:nand;l{lay} exports match, topologies match, sizes match in 0.0 seconds. Comparing: cla64:cl{sch} with: cla64:cl{lay} exports match, topologies match, sizes match in 0.0 seconds. Comparing: cla64:c2{sch} with: cla64:c2{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:c3{sch} with: cla64:c3{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:inv{sch} with: cla64:inv{lay} exports match, topologies match, sizes match in 0.0 seconds. Comparing: cla64:xor{sch} with: cla64:xor{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:full_adder{sch} with: cla64:full_adder{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:pg4{sch} with: cla64:pg4{lay} exports match, topologies match, sizes match in 0.001 seconds. Comparing: cla64:cla4(sch) with: cla64:cla4(lav) exports match, topologies match, sizes match in 0.004 seconds. Comparing: cla64:cla16{sch} with: cla64:cla16{lav} exports match, topologies match, sizes match in 0.001 seconds. Summary for all cells: exports match, topologies match, sizes match NCC command completed in: 0.027 seconds. ----41--Running DRC with area bit on, extension bit on, Mosis bit Checking again hierarchy (0.001 secs) Found 65 networks 0 errors and 0 warnings found (took 0.004 secs) < >

Figure 28: 16-bit CLA Checks

On the next page is the final layout of the 32-bit CLA. Due to the sheer size of the layout, it's split into two figures—one for the top part and one for the bottom.

Figure 29: 32-bit CLA Layout (Full)

Figure 30: 32-bit CLA Layout (Top)

Figure 31: 32-bit CLA Layout (Bottom)

😢 Electric Messages	_	\times
4242		~
Running DRC with area bit on, extension bit on, Mosis bit		
Checking again hierarchy (0.001 secs)		
Found 102 networks		
Checking cell 'cla32{lay}'		
No errors/warnings found		
0 errors and 0 warnings found (took 3.144 secs)		
Checking Wells and Substrates in 'cla64:cla32{lav}'		
Geometry collection found 5880 well pieces, took 0.008 secs		
Geometry analysis used 4 threads and took 0.003 secs		
NetValues propagation took 0.004 secs		
Checking short circuits in 842 well contacts		
Additional analysis took 0.001 secs		
No Well errors found (took 0 016 secs)		
Hierarchical NCC every cell in the design: cell tole32/schl/ cell tole32/levit		
Commaring: cla64 inv wall(sch) with: cla64 inv wall(lav)		
avporte match topologiae match sizes match in 0.0 seconds		
Companing, claffring wall(ach) with, claffring wall(law)		
Comparing: Clade:inv_well(scn) with: Clade:inv_well(lay)		
exports match, topologies match, sizes match in 0.002 seconds.		
Comparing: clao4:nand[scn] with: clao4:nand;l[lay]		
exports match, topologies match, sizes match in 0.001 seconds.		
Comparing: cla64:nand{sch} with: cla64:nand{lay}		
exports match, topologies match, sizes match in 0.001 seconds.		
Comparing: cla64:cl{sch} with: cla64:cl{lay}		
exports match, topologies match, sizes match in 0.001 seconds.		
Comparing: cla64:c2{sch} with: cla64:c2{lay}		
exports match, topologies match, sizes match in 0.0 seconds.		
Comparing: cla64:c3{sch} with: cla64:c3{lay}		
exports match, topologies match, sizes match in 0.001 seconds.		
Comparing: cla64:inv{sch} with: cla64:inv{lay}		
exports match, topologies match, sizes match in 0.0 seconds.		
Comparing: cla64:xor{sch} with: cla64:xor{lay}		
exports match, topologies match, sizes match in 0.001 seconds.		
Comparing: cla64:full_adder{sch} with: cla64:full_adder{lay}		
exports match, topologies match, sizes match in 0.0 seconds.		
Comparing: cla64:pg4{sch} with: cla64:pg4{lay}		
exports match, topologies match, sizes match in 0.003 seconds.		
Comparing: cla64:cla4{sch} with: cla64:cla4{lay}		
exports match, topologies match, sizes match in 0.001 seconds.		
Comparing: cla64:cla16{sch} with: cla64:cla16{lay}		
exports match, topologies match, sizes match in 0.001 seconds.		
Comparing: cla64:cla32{sch} with: cla64:cla32{lay}		
exports match, topologies match, sizes match in 0.002 seconds.		
Summary for all cells: exports match, topologies match, sizes match		
NCC command completed in: 0.019 seconds.		
		-

Figure 32: 32-bit CLA Checks

Section 5: IRSIM Logic Simulations and Measurements

IRSIM is used to test the logic behind the circuit that we made and to verify that it satisfies our design requirements. In this section, we would also be discussing the results of the IRSIM simulations. The inputs that were given to IRSIM are shown in the table below. We would first test five additions, A + B = S, and later test five subtractions, using the results from the addition. The subtraction would then be S - B = A, so as a result, we should get our initial input back. Using this sort of computation makes verifying our circuit easier, in addition to testing the logic of the circuit.

	Input: A	Input: B	Expected Output: S
	(Hexadecimal/Decimal)	(Hexadecimal/Decimal)	(Hexadecimal/Decimal)
First Addition	0x7FFFFFFF	0x0000001	0x80000000
	2147483647	1	2147483648
Second Addition	0x7FFFFFFF	0x8000000	OxFFFFFFF
	2147483647	2147483648	4294967295
Third Addition	0x12162019	0x00040000	0x121A2019
	303439897	262144	303702041
Fourth Addition	0x11031997	0x01130682	0x12162019
	285415831	18024066	303439897
Fifth Addition	0x09161998	0x09000681	0x12162019
	152443288	150996609	303439897
First Subtraction	0x80000000	-0x0000001 =	0x7FFFFFFF
	2147483648	OxFFFFFFF	2147483647
		-1	
Second	OxFFFFFFF	-0x80000000 =	0x7FFFFFFF
Subtraction	4294967295	0x8000000	2147483647
		-2147483648	
Third	0x121A2019	-0x00040000 =	0x12162019
Subtraction	303702041	0xFFFC0000	303439897
		-262144	
Fourth	0x12162019	-0x01130682 =	0x11031997
Subtraction	303439897	0xFEECF97E	285415831
		-18024066	
Fifth Subtraction	0x12162019	-0x09000681 =	0x09161998
	303439897	0xF6FFF97F	152443288
		-150996609	

Table 1: Input and Outputs of the Computations (IRSIM)

Section 5.1: Schematic

The input and output waveforms generated by IRSIM for the 32-bit CLA schematic are shown below. Each figure shows 8 bits each. Figures 33 to 44 show the inputs and outputs for the five additions. Figures 45 to 56 show the inputs and outputs for the five subtractions.

File Edit Cell Export V	iew Window Tools Help						
🚵 🗟 🕨 🖑 🐼	🍠 拱 0.5 👯 👎 📑 🐚 💸 🕿 💓 🗭 🌩	8.0		CCC	0v1216	2010	0,00161000
Simulation of cla64:cla32	sch)		UX/FFFF			2013	0003101330
Components Emplorer Laware	🖼 🗖 🦓 Panel 1 🚽 🖓 🛧	Main	n: 48.551ns Center	UX/FFF	Ext: 48.551	• ••XTTO3	99
THAN SIGNALS	<u> </u>	Ţ	ne Os 10r	s 20ns	30ns 40ns	cons 60ns 70	ns aons Sons
e c2@0 cla16@0 e cla16@1 ♦ s0	。Input: A0	ו××	1	1		1	0
• a2	2	× 🗆 💥 💥			!		
+ x3 + s4 + s5 + x6	Input: A1			 1	0	1	0
- # a7 - # a8	3	🗙 📈 🖂 🗡	•				0
- + a9 - + a10 - + a11	Input: A2			1	0	1	0
+ a13	4	🗙 🐱 🖂 🗡	5				
 	Input: A3		√ 1	1		0	
• a18	5	× 🗆 💥 💥	A				
* a19 * a20 * a21 * a22	🕞 Input: A4			1	1	1	
- • a23	6	× 🖬 💥 麗					
* a24 * a25 * a26 * a27	Input: A5			1	0	0	0
# a25	7	🗙 🖬 🔀 🐹				3	3
- + a30 - + a31 - + b0	🔹 Input: A6			1	0	0	0
• b2	8	× 🗆 🗙 🕷	L L				
+ b3 - 0 b4 - 0 b5 - 0 b6	Input: A7		✓ 1	1	0	1	
	9	× 🗆 🔀 💥					
NOTHING SELECTED SIZ	: 323 x 123 TECH: schematic				1	I	(-990.5, 959.5)

Figure 33: Input A[0:7]

Electric .						
File Edit Cell Export View Window Tools Help						
📸 님 📐 (전) 오 🖂 🗯 0.5 👯 🥊 🔡 👘 🗰 🕯	<u>ື</u>	7FFFFF	:FF	0x1216201	9 Ox	09161998
Simulation of cla64:cla32(sch)	0	/			1102100	
Explorer Layers	Main: 48.551	ns Center Os 10ns	UX/FFFFI 120ns 130ns	Idons ISons		laons isons
P JUL SIGNALS						
		1	1	A	1	4
				()		
- • a1	<u>_</u>			· · · · ·		- i i
- • a2 10	<u> </u>			7 1		_
		1	1		\cap	
	C	-				
- • a7 11	× 🗆 💥 💥]			,
		1	1		0	
					U	U
• a12	× 🗆 💥 🕷 🚽 🚽			1		
		1	1		1	1
		L			1 L	L
- • a17					•	-
• alo 13		4	1		4	4
- • a22	- <u> </u>	_	.	· ·		- i - i
• a23 14	× ⊒ ¥ ∭				•	•
I and Innut· Δ1-	ן ⊔ו	1	1	1 1	0	
		-				
• a28 • a29 15	× 🗆 💥 🐹 「) F	ע אר		L
		1	1		\cap	
	•	L - L			U	U
• b1 • b2 16	× 🖬 💥 💥 🗌			1 !		
	<u> </u>	1	1		0	
		L L .		1 U	U	U
• b6 • b7	× • ¥ ¥					
- • b8 · ·	∧ □ ∞ ∞					~
NOTHING SELECTED SIZE: 323 x 123 TECH: schematic						(-990.5, 959.5)

Figure 34: Input A[8:15]

<u>File Edit Cell Export View</u>	v <u>W</u> indow <u>T</u> ools <u>H</u> elp									
👌 🖶 ト 🖑 🔍 🎑 🧢	卅 0.5 🗮 👎 📑 🐚 💸 📽 📦 🔶 🗰 👄	0	76666			0.121	1620	10	0,000	161000
Simulation of cla64:cla32(sch	1)	UX	/	<u>- 1 7</u>		UXIZ.	LOZO	19	UXUS	101330
Components	루 🞵 🏭 Panel 1 🛛 🗸 🎝 🖓	Main: 48.551n:	Center	UX /	/FFFF F	Ext: •	48.551ns Cent	X1103.	199 ./s	
Explorer Layers	BR HIBHHAV	Time 0	s 10ns	20	ins 30ns	40ns	50ns	60ns 70	ns 80n	s 90ns
+ c2/20	17	× 🗆 💥 🐹 🔥 👔		1 Г		1				^
± cla16@0	Innut A16		1		1		\mathbf{O}	1		
							U			0
- • a1				-			-			
• a2	18	× 🗆 🗙 💥		1 Г			1			
- • a4	Innut·A17		1		1		1	1		1
- • a5	" input.AL/		_ _	╧┲╧			∔ _}	<u> </u>		-
• a7	19	X D M W			•	0		5	-0-	
• að			4		4	-	1	~ ^	-	
- • a10							1	- ()		1
0 a11	mput.Ato			ė ė			÷ 🛓			- -
• a12	20	× 🗆 🗙 💥 🚽 🖓		1 [1	1			
- • a14	Input: A10		1		1		\square	0		
• e15	INDULATA				1		U	0		U
• a10		· · · · ·		.		.		-		
• a18	21	× 🗆 💥 💥 🔥 👖	-	л г				-		
• a15	Input A20		1		1		1	0		1
• s21	²⁰ IIIpul.AZU			1 1		1 1	L 1	0		-
• a22	11	× ¬ × ₩								
• a24		∧ □ 9 9 	4		4		^	0		
- • a25	$_{\rm m}$ Innut $\Delta 21$				1		(i)	()		
- @ 827	" Input. AZI		-	i Ci	- ÷ ,	1	Y (1	<u> </u>
• a28	23	× • × ×		1 - -		ī L	1			
- • a30			1	171	1	_	\mathbf{A}	<u> </u>		
• a31							U	U		U
- • b1 -				<u> </u>						
- • b2	24	× 🖬 💥 💥 📜 📙 [1 Г]				
- • b3			1		1		\cap	0		
- • b5	🐃 ΠΙΡUL. ΑΖΟ		_ _	1 1	Щ.		V	0		U
• b6		× ¬ × **					1			
- • b8	23	∧ □ 9, 28					1			
NOTHING SELECTED SIZE: 3	23 x 123 TECH: schematic									(-990.5, 959.5)

Figure 35: Input A[16:23]

Figure 36: Input A[24:31]

W Dectric						×
Elle Edit Cell Export View Window Tools Help			01 Ov	000/1000	0 0x0	9000681
Simulation of cla64:cla32(sch)		000000		0004000		
Components 🔤 🖓 🖓 Panel 1 🗸 🖓	Main: 48.551n	s Center 🚺	X8000000	Ext: 48.551ns Cette	x0113068	2
	Time C	0s 10ns	20ns 30ns	40ns 50ns	60ns 70ns	80ns 90ns
		1	0	0	0	1
	× • × ×	0	0	Ó ,	1	0
ation at a set of the	× • × • ×	0	0	0	0	0
atz atz atz atz atz bz Input: B3		0	0	0	0	0
aii aii a20 a21 bi Input: B4	× • × • ×	0	0	Ó	0	0
• 423 • 424 • 425 • 428 • 627 • 627 • 627	× • • • • • • • • • • • • • • • • • • •	0	0	0	0	0
a28 a30 a31 b0 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1	× • × • × •	0	0	0	0	0
** Input: B7	× • × • ×	0	0	0	1	1
41 	× u × X					
NOTHING SELECTED SIZE: 323 x 123 TECH: schematic						(-990.5, 959.5

Figure 37: Input B[0:7]

Figure 38: Input B[8:15]

Sectric Electric						
Eile Edit Cell Export View Window Iools Help	0x00	000001	0x00	040000	0x090	000681
● Simulation of cla64:cla32(sch) Components 四丁 品 Panel 1 × 成 ネ	Main: 48.551ns Cer	. 0x800	00000	t: 48.551ns CQX01	130682	- 1 ×
	Time Os	10ns 20ns	30ns 40ns	50ns 60ns	70ns 80ns	90ns
		0	0	0	1	0
50 64 65 66		0	0	0 _	1	0
• 47 • 47 • 47 • 47 • 47 • 47 • 47 • 47		0	0	1	0	0
sz e di e di e di e di e di bi9 Input: B19		0	0	0	0	0
si eiti ei		0	0	0	1	0
• 473 • 474 • 475 • 475		0	0	0	0	0
55 6 20 6 30 6 30 6 22 6 2 7 7 7 7 7 7 7 7 7 7 7 7 7		0	0	0	0	0
⁵⁵ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰		0	0	0	0	0
• b7 57	×IX					
NOTHENG SELECTED SIZE: 323 x 123 TECH: schematic						(-990.5, 959.5)

Figure 39: Input B[16:23]

Figure 40: Input B[24:31]

Sector C					
Eile Edit Cell Export View Window Iools Help	0x800000	0 000	x121A2019	9 Ox:	12162019
U Simulation of cla64:cla32(sch)					- f 🗙
Components Explorer Layers ﷺ Ø K ◀ ■ ► N ▲ ▼	Main: 48.551ns Center Time Os 10ns	OXHHHHH 20ns 30ns	40ns 50ns	1216200	80ns 90ns
Carego carego carego carego so at so at		1	1	1	1
* Output: S1		_ 1	0 0	0	0
67 67 67 67 67 67 67 67 67 67			0	0	0
es es es es es es es es es es es es es e	× • × × × × • • • • • • • • • • • • • •	1	1	1	1
* Output: S4		1	1	1	1
** Output: S5		_ 1	0	0	0
** Output: S6				0	0
⁷² ⁷² ⁶⁴ ⁶⁵ ⁶⁵ ⁶⁵ ⁶⁵		1	0	0	0
73	× • × ×				
NOTHING SELECTED SIZE: 323 X 123 TECH: Schemabo					(+990.5, 959.5

Figure 41: Addition Schematic IRSIM - Output S[0:7]

Figure 42: Addition Schematic IRSIM - Output S[8:15]

W Electric						
Elle Edit Cell Export View Window Tools Help	4 + a a	0x80000	000	0x121A20	19 0x1	2162019
Simulation of cla64:cla32(sch)		0/00000				- a ×
Components Explorer Layers □ □ □ □ Statutes □ □ □ □ Statutes □ □ □ □ □ Statutes □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		Main: 48.551ns Center Time Os 10ns	OxFFFFF 20ns 30ns	40ns 50ns	x1216201	80ns 80ns
	:: S16		1	Ó	0	0
ad ad ad ad ad ad ad ad ad ad ad ad ad a	× • × • × ×	0	_ 1			1
a7 a8 a9 a10 a11 a12 a12 a12 a12 a12 a13 a13 a14 a14 a14 a14 a14 a14 a14 a14	×□×≋ ::S18	0		Ó	0 0	0
e a12 e a13 e a14 e a15 e a16 e a16 e a16 e a12 e a13 e a13 e a13 e a14 e a13 e a14 e a13 e a14 e a15 e a16 e	ו×× :: \$19	0	1	1	0	0
a17 a18 a19 a20 a21 a21 a21 a21 a22 a21 a22 a22 a21 a22 a22	פ×≋ :: S20	0	1	1	1	1
6 623 624 625 625 626 627 627 627 627 627 627 627	פפ : S21	0	_ 1		_ 0	0
age	× □ × ≇	0		0	0	0
	× • × • × #		1	0	0	0
• b7 89 • 00Th(ING SELECTED SIZE: 323 x 123 TECH: schematic	※ 🔾 🗆 ×					(-990.5, 959.5)

Figure 43: Addition Schematic IRSIM - Output S[16:23]

Figure 44: Addition Schematic IRSIM - Output S[24:31]

Р	a	g	e	36
---	---	---	---	----

U Electric						
File Edit Cell Export View Window Tools Help	0x8	8000000	0 0	x121A2019) Ox	12162019
Imulation of cla64:cla32(sch)		Û X Î	FFFFF	FF Ox	1216201	9
Components Panel 1 v 🎶 💠	Main: 48.846ns	Center		Ext: 48.846ns Center		ita: 0s
	Time Os	10ns	20ns 30ns	40ns 50ns	60ns 70ns	80ns 90ns
22g0 1	× 🗆 💥 🐹 🔥	_				· · · · · · · · · · · · · · · · · · ·
Input: A0		0	1		11	
- • • • • • • • • • • • • • • • • • • •	× 🗆 🐱 🐭 🖉			1		-
• a3		0	1	6	0	
Input: AL						
• 87 3	× 🗆 🗙 🕷 🗸 🗖			9 3		,
		\mathbf{O}	1		0	
		υ.	L - L	U U	U	U
- • a12 4	× 🗆 💥 💥 🖵 🖵					
		\cap	1	1	1	1
		υ.	_ <u> </u>	↓ ↓ ↓ ↓	1 4 1	1 4 11
• a17 • a18 5	× 🗆 💥 💥 🔥					•
		\cap	1	1	1	1
	4 4	<u> </u>	·	<u> </u>	1 × 1	_↓ ▲ ↓]
e a23 6	× 🖬 💥 💥 👘					
		0	1		\cap	
				1 4 1	0	U
• s28 7	× 🛛 💥 💥 😈 🗖	·				
		Ο	1		0	
		U .		Ų V	U	U
8	× 🖬 💥 💥 🗸 🚽			1		
		0	1		0	
I I I I I I I I I I I I I I I I I I I		<u> </u>	L	U	U	U
9 9	× 🛛 💥 💥					
				!		(534 5, 330
NOTHING SELECTED SIZE: 323 X 123 TECH: schemabo						(-539.5, 309.

Figure 45: Input A[0:7]

Figure 46: Input A[15:8]
					<u> </u>
0x	8000000		x121A201	9 0	12162019
0		FFFFF	FF	1216201	9
Main: 48.846n:	s Center	20ag 20ag	Ext: 48.846ns Center		Jeita: 0s
× 🗆 کھڑ کھڑ					
	0	1	0	0	0
× • × ×	0	1	1	1	1
()	F'				
	0	1	0	1	1
× 🗆 💥 💥 🧧 🤟	-				
		1	1	0	0
× • × ×	•	4			
44		1,	1	1	1
🗙 🖂 🗆 🗙	•	4		•	•
		1	1 0	0,	0
× 🗆 💥 💥 🗸		4		L	
	0		Ų	0	0
× 🖬 💥 💥 🧹 🕇	•			•	_
	0	1	Q	0	0
× □ 💥 💥					
		1	1		(-534.5, 309.
			Ox80000000 Ox Wain: 43.95cm Center Time P P 10m N N O 1 N N O 1 N N O 1 N N O 1 N N O 1 N N O 1 N N O 1 N N O 1 N N O 1 N N O 1 N N O 1 N N O 1 N N O 1 N N O 1 N N O 1 N N O 1 N N O 1 <td>Ox80000000 Ox121A2019 OxFFFFFFF Ox Image: 93.866 Center Image: 93.866 Center Image: 93.866 O Image: 93.867 O <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></t<></td>	Ox80000000 Ox121A2019 OxFFFFFFF Ox Image: 93.866 Center Image: 93.866 Center Image: 93.866 O Image: 93.867 O <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></t<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Figure 47: Input A[16:23]

Figure 48: Input A[24:31]

	0x000000 0xFFFFFF	01 -F	0x0004000 0xFFFC0000	0 0 0 0 0	09000681 F6FFF97F
Main		0x800000 0x8000000	00 - 00 Ext: 48.846ms Cen		os Nos Igons
× • ×		0	0	0	1
۲ × ۲ × ۲					
× • * *		0	0 0	Eª₽₽	
	· 1	0	Ō	⁻ 1 [']	1

0

0

0

0

0

7

0

0

0

0

0

0

0

Figure 49: Input B[0:7]

1

1

1

1

1

✐

F

× 🗆 🗙 💥

× 🗆 🔀 🕱

× 🗆 💥 💥

× 🗆 💥 💥

× 🗆 🔀 💥

× 🗆 💥 💥

31e Edit Cell Export View Window Icols Help 🚵 🗐 💺 (4) Q. 🖸 🔎 拱 0.5 拱 👎 🗂 📡 🎘 📽 😭 🖛 🗰 📾

b2

38

b6

b7

→ b7
 → b3
 →
 →
 ×
 →
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×

₩ 11 🔠 Panel 1 🗸 🕸 🐥

Input:B0

Input:B1

Input:B2

Input:B3

Input:B4

Input:B5

Input:B6

Input:B7

imulation of cla64

Figure 50: Input B[8:15]

1

1

1

1

0

(-534.5, 309.5)

1

1

1

1

0

😃 Electric						ๅ๛ฅ๏๓๓๓฿๛๙๚
Elle Edit Cell Export View Window Icols Help	-0x	FFFFFF	-F	0xFFFC000		0xF6FFF97F
Simulation of cla64:cla32(sch)		-	000000x800000	00	-0x0113068	32 - 🛛 💌
Components Professor	Main: 48.846r	is Center	0x800000	00 Ext: 48.846ns C	OxFEECF97	be <mark>n</mark> : 0s
	Time	0s 10ns	20ns 30ns	40ns 50ns	60ns 70ns	80ns 90ns
49 50 car6go 50 eller 10 eller 1		1	0	0	0	1
	× • × ×	4	0	0	0	
		<u> </u>				
	× 🗆 🗙 🗶 📘	1	ں ا			1
		_ _ _	0	L	<u>↓</u> ↓ ↓	_ <mark>↓</mark> ▲ ↓
••••••••••••••••••••••••••••••••••••••	× • × × <	1	0			4
Input: B19		, L ,	U		L L L	_ ⊥ _
• a18 53	× • × ×					
Input: B20	4 4	1	0	1	0	1
• a23 54	×uxx					
		1	0	_ 1	1	1
• a28 • a29 55	× 🗆 💥 🗶 🔽		U			
🛛 📲 🗤 Input: B22		1	0	_ 1	1	1
6 b1 6 b2 56 56	× 🖬 💥 💥 🗸 🛛					
Input: B23		1	0	1		
	× 🗆 💥 💥				_	
NOTHENG SELECTED SIZE: 323 x 123 TECH: schematic					1	(-534.5, 309.5

Figure 51: Input B[16:23]

Figure 52: Input B[24:31]

C Decine									
Elle Edit Cell Export View Window Tools Help	0.4	70000	CCC -		v12162	010	0	vno1	61009
	UX	/ F F F F	ГГГ		XTZ102	.019	10210	XU31	101336
Simulation of clab4:cla32(sch)	Main: 40.046a	Cantas	0x7	FFFF	FF and a second	UXT	.10315	191	
Explorer Layers	Time 10	s Center 110ns	. 120ns	. I30ns	40ns . 50	ins i60n	s. 70ns.	180ns	190ns
FIND SIGNALS	X D M W								
		1		4	1		1		
				1	1 I L		1		0
at at									
66 a2 b6	× u 🕫 😹						4		
		1		1	0		1		0
		J 📥				- 7		0	
67 67	× 🗆 🗙 🎇		┐╹┌─			· / [
		1		1			1		()
				- -	Ť				<u> </u>
e a12 66	× 🗆 💥 💥 🚽 与								
		1		1	1		0		1
		_ _		- -	+		U		- L
• a17 • a18 69	× 🗆 💥 💥 🔥]
		1		1	1		1		1
		L 1			1 I I				L
a23 70	× ¬ × ¥							•	
	A III 94 35	1		1			Ω		
Soutput: 55				1	U U	~	U		0
	F -				4	<u> </u>		<u> </u>	
- • a29 71	× 🗆 💥 💥	4	''	4] - 🗼		0		
		1			(i)		U		U
					<u> </u>				
• b2 72	اح ک <mark>ی 🐹 🖉 🗆 ×</mark>				1 🛓	[
		1		1			1		1
		-		- -	Ý		- -		- L
* b7 73	× 🗆 💥 💥								
					1				·
NOTHING SELECTED SIZE: 323 X 123 TECH: Schemabo									(-534.5, 309.5)

Figure 53: Subtraction Schematic IRSIM - Output S[0:7]

Figure 54: Subtraction Schematic IRSIM - Output S[8:15]

w Dectric									
Eile Edit Cell Export Vi	ew Window Iools Help	0.4		rrr -	6	v121620	10		0161000
👌 🖬 🖡 🖑 Q 🖸 .	• 册 0.5 冊 <mark>- 9</mark> 🚹 🐚 🎇 📽 😭 4 🔶 🕿 👄	UX	/FFFF		(X12102(19 100		2101220
US Simulation of cla64:cla32	sch)			$0 \sqrt{7}$	FFFF	EE -	UX110 3	51997	- H ×
Components Explorer Lavers		Main: 48.846n:	Center	12000	12000	Ext: 48.846ns	Center	Delta: 0s	3 100mc
SIGNALS A		lime of the lime		1 20118	0018				
★ c2@0 c1=16@0	81					1 i			
E- cia16@1	🖙 Output:S16	[]	1		1	U	1		
• # a1	82	× 🗆 💥 💥							
- • a3 - • a4 - • a5	Output:S17		1	_	1	<u> </u>		C	1
• so • a7	83	× 🗆 🗙 💥	, 	- T		b	-3	b	
• a0 • a9			1		1	1	∩	_	1
e a10					T	+			
- • a12 - • a13	84	× 🗆 💥 💥 🚽 🦕				1 🔟	~		
e a14 e a15 e a16	Output:S19		1		1	()	0		0
• a17 • a18	85	× 🗆 💥 💥 🔥				- <u> </u>		П	
• a19 • a20 • a21	Output:S20		1		1	1	0		1
• a22	86	× 🗆 💥 💥	_			!	1 0	Π	
- • a24 - • a25 - • a26 - • a27	Output:S21		1		1	1 0		1	0
a28	87	X 🗆 💥 💥	-	- T			1Un		
- • a29 - • a30 - • a31 - • b0	Output: S22		1		1	0	0		0
• b1	88	× • × × •	-					 	1 1
- • b3 - • b4 - • b5	Output: S23		1		1	0	0 0		0
- 6 b7	89	× 🗆 💥 💥							
NOTHING SELECTED	323 x 123 TEOI: schematic		1						(-534.5, 309.5)
									(55 1.5, 565 15)

Figure 55: Subtraction Schematic IRSIM - Output S[16:23]

Figure 56: Subtraction Schematic IRSIM - Output S[24:31]

The output matches what we expected so we can confirm that the schematic satisfies our design requirements. In addition, it should be noted that there are some spikes before we get the correct output, and that is due to the delay of the design.

Section 5.2: Layout

Below are the waveforms generated by IRSIM for the 32-bit CLA layout. Because the same input waveforms are used, only the output sum bits are shown for the layout. Figures 57 to 60 shows the outputs for the five additions. Figures 61 to 64 shows the outputs for the five subtractions.

Elle Edit Cell Export View Window Iools Lelp 🚵 🕞 💺 🖑 🔍 💭 🍠 🇮 0.5 👯 🥊 📲 🐂 🕷 🏶 📽 🖘	0x8000000	0x121A2019	0x12162019
We simulation of cla64-zla32(by) Components Explorer Layers Image: I	Main: 48,693ns Center OX Time 08 10ns 20ns		
e alle alle alle alle alle alle alle al		1 1	1 1
⁶⁶ • Output: S1		1 0	0 0
⁶⁷ ⁶⁷ ¹⁰ ¹¹ ¹² Output: S2		1 0 9	0 0
• • • • • • • • • • • • • • • • • • •		1 1	1 1
••••••••••••••••••••••••••••••••••••••		1 1	1 1
70 6.24 6.25 6.		1 0	0 0
• 430 • 430 • 431 • 631 • 631		1 0	0 0
⁷² ¹⁷ Output: S7		1 0	0 0
00 73 01 73 NOTHING SELECTED SIZE: 1401.5 x 2892 TECH: momons (scale=175.0nm,foundry=MOSIS)	× = × ×		(456, 2207)

Figure 57: Addition Layout IRSIM - Output S[0:7]

😍 Electric					
Eile Edit Cell Export View Window Icols Help	• 0x8000	0000	0x121A2019	9 0x1	2162019
Simulation of cla64:cla32{lay}		0			×
Components 🕎 🞵 🏭 Panel 1 🗤 🗤 🛧	Main: 48.693ns Center	UXFFFF	Ext: 48.693ms Center X	1216201	9
Explorer Layors SE 2 H 4 E > H A V	Time Cs	Ons 20ns 30ns	40ns 50ns	60ns 70ns	80ns 90ns
2000 73	× • × × × • •				
	3 0		0	0	0
• a1 • • a2 74	X L X X			1 1	1 0
• Output: SS			0	0	0
@ a7 75				n nt	n n
sto Output: S1	10		0	0	0
e a12 76	× 🗆 💥 💥 🖵 👝		-	пп	
sti Output: S2	11 🗸 🖓 🗠 C	1	Q	0	0
• s18 77	× 🗆 🗙 💥 👘 👝			п п	п п
	12	0 1	Q	0	0
• a23 78	× 🗆 💥 💥 👘 🗖				
	13			1	
- 6 828 - 6 829 79	× 🛛 💥 💥 🚺 🗖 🖉		¬∠	. 4	
•• Output: S2	14 📊 C	1	0	0	0
80	× • × ¥ 📜 🗌 🥅		-		
s Output: S	15 🗸 🗸) 1	0	0	0
	× 🗆 💥 🐹 🛛				
					¥

Figure 58: Addition Layout IRSIM - Output S[8:15]

w electric						
File Edit Cell Export View Window Tools Help		0,00000	000	0v121420	10 Ov	12162019
Simulation of clafdicia?2/avl	2	0,200000	000			12102015
Components □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	M	ain: 48.693ns Center Time Os 10ns	OxFFFFI 20ns 30ns	40ns 50ns	€x121620	80ns 90ns
	.6	<u>∧</u>] 0	1	Ó	0	0
¹¹⁷ Output: S1	פ×× 17	0	1	1		_ 1
az as sto Output: S1	× = × ×		1	A Ó	1	
at2 at3 at4 at5 at5 at5 at5 at5	× • × *		1	1	0	0
• • • • • • • • • • • • • • • • • • •	× • × • × ×		1	1	1	1
aza aza aza aza aza aza aza aza aza aza	× • × *		_ 1		_ 0	0
azis azis azis azis azis azis azis azis	× □ × ≝				0	0
Bi Output: S2	פ××,		1	0	0	0
• b7 89 • b8	× ロ 🏹 🦉					(486, 2207)

Figure 59: Addition Layout IRSIM - Output S[16:23]

Figure 60: Addition Layout IRSIM - Output S[24:31]

Cieculo Cieculo								(,	
File Edit Cell Export Vi	ew Window Tools Help	0,		CCC.	6	v121620	110		0161000
👌 🖬 ト 🖑 Q 🖸 -	• 拱 0.5 洪 📲 🛅 🐚 彩 📽 🕼 🕈 🔿 👄	0)	K/FFFF		U	XTTT05(119	UXU	<u>atotaao</u>
Simulation of cla64:cla32(ny)			$0 \sqrt{7}$	EEEE	:CC	UX110	3199	- a ×
Components Explorer Lavers	🏧 🎵 🏭 Panel 1 💦 🖓	Main: 49.04	Ans Center	UX/	FFFFF	Ext: 49.04ns 0	Center	Delta: 0	25
- Tatta Signals		Time	US 10ns	2Uns	Juns	4uns ouns	buns	/uns of	uns yuns
+ c2@0	65	_ × □ × X _ ∧						-	
± cla16@0 ∓ cla16@1	ω Ουτρυτί 5Ο		1		1	1			
0a 🖲	Sulput. 50	4 کا				.		-	U
• a1	66	× 🗆 🗙 🕱							
• a3			1		1		· · ·	1	
- • a5	🗉 Output: SI				1			L	
- • a6						<u> </u>	<u> </u>	\	
- • a8	67	× ⊔ 🕺 😹			4				
- • a9 - • a10	💷 Outnut: S2				-		-		
- 0 a11	^a Output. 52		L -		-	Ĩ			
• a12	68	× 🗆 💥 💥 🚽 💪] [٦		
• a14	O_{11}		1		1	1)	1
- • a15	$ $ \circ \cup $u_1 \mu u_1$. \sum		1 L			+)	_ _
- e a17	50	X D X W							
- • a19			1		1			1	
- • a20	🕞 Outbut: S4	/ \			_ 1				
• s22		_ L	·						
• a23	70	× 🗆 💥 🕱				٦ 🖌 ٦		~	
- • a25			1		1		(
- • a26 - • a27	Sulpul. 55		-			1 4	o	1 0	
• a28	71	× 🗆 💥 💥					,		
- • a29 - • a30			1		1			า 📗	
- e a31			11 L					J	
- # b1			<u> </u>					IL	
- • b2	72	<u>× • × ×</u> 7			4			1	4
- • b4	a Output: S7		1		1	(i)			
• b5	[*] Output. 57	V	□ ♣		-	Y			յ 🗕 լ
● b7	73	× 🗆 💥 🐹							
b8 v									·
NOTHING SELECTED SIZE	: 1401.5 x 2892 TECH: mocmos (scale=175.0nm,foundry=MOSIS)								(-2530, -279)

Figure 61: Subtraction Layout IRSIM - Output S[0:7]

Figure 62: Subtraction Layout IRSIM - Output S[8:15]

Liectric									
File Edit Cell Export Vi	ew Window Tools Help	0				v121620	10	0,000	161000
👌 🖬 🖡 🖑 Q 🖸 -	● 黒 0.5 黒 📑 🖪 🖹 📽 📽 🕼 + + 🔿 🍛	0	X/FFFF		(XT7105(112	UXUS	101335
Simulation of cla64:cla32(i	ay)			0.70	CCCC		UX110 3	1997	- 1 ×
Components Explorer Lawers	🕎 🞵 🏭 Panel 1 🗸 🖓 🖓	Main: 49.0	Hns Center	071		Ext: 49.04ns	Center	Delta: 0s	100
- nona Signals		Time	US 10ns	20ns	30ns	4uns 50ns	ouns	uns 80n	is jagins
★ c2@0	81	× ⊑ ≫ X			-	7 <u> </u>			
±- cia16@0 ∃- cia16@1	• Output:S16		1		1	0	1		1
- • a1	82	× □ ₩ ₩							
• a3					1		1		1
• a4 • a5 • a6	Uutput:S1/		1		T			C	J 🗕 📋
• a7	83	× 🗆 💥 💥 🗖		┐┢┌╴			_ ລັ	b r	
- • a9			1		1	1			1
- • a11					-	<u> </u>			<u> </u>
● a12 ● a13	84	× 🗆 🗙 💥 🚽 🖌					0		
• a14 • • a15			1		1		0		0
- e a16 - e a17		V			_	<u> </u>			
• a18	85	× ⊑ × ≝							
• a20	🗠 Output:S20	$ /\rangle$	1		1				1
• 821 • 822	040940.520	\ _ F	<u> </u>		-				
• a23 • a24	86	× 🗆 💥 💥							
• a25			1		1	(i)			U
- • a27		C	<u>µ •</u>		-	4	പപ്പ	1	<u> </u>
• a29	87	× 🗆 💥 💥 📘		 				<u>_</u>	
@ a30 @ a31	🗤 Outnut S22		1		1				U
- • b0			<u>µ •</u>		-				
- • b2	88	× 🖬 💥 🐹 🧹	/			1 I 👗		0 0	
• b4	Outnut S23		1		1	(i)			U
- • b5 - • b6		V	<u>µ -</u>		<u> </u>				
	89	🗙 🛒 🗆 🗙							—].
NOTHING SELECTED SIZE	: 1401.5 x 2892 TECH: mocros (scale=175.0nm,foundry=MOSIS)		1.1			1 11 2	11 1		(-2530, -279

Figure 63: Subtraction Layout IRSIM - Output S[16:23]

Figure 64: Subtraction Layout IRSIM - Output S[23:31]

Similarly to the schematic, the output matches with what we expected so we can confirm that the layout satisfies our design requirements. In addition, there are also delays in the layout as well.

Section 5.3: Comparison

The results gathered from the IRSIM simulation for both schematic and layout are shown below. As we observed, the output for both the schematic and layout matches the expected output so it verifies that the logic of our circuit is correct. Before obtaining the correct output, spikes are seen in both the schematic and layout; that is due to the delay. When comparing the delay of the schematic and layout, the layout appears to have a larger delay. This is to be expected, due to the parasitic effects present in the layout.

	Expected Output	Output Schematic	Output Layout
	(Hexadecimal/Decimal)	(Hexadecimal/Decimal)	(Hexadecimal/Decimal)
First Addition	0x80000000	0x80000000	0x80000000
	2147483648	2147483648	2147483648
Second Addition	OxFFFFFFF	OxFFFFFFF	OxFFFFFFF
	4294967295	4294967295	4294967295
Third Addition	0x121A2019	0x121A2019	0x121A2019
	303702041	303702041	303702041
Fourth Addition	0x12162019	0x12162019	0x12162019
	303439897	303439897	303439897
Fifth Addition	0x12162019	0x12162019	0x12162019
	303439897	303439897	303439897
First Subtraction	0x7FFFFFFF	0x7FFFFFFF	0x7FFFFFFF
	2147483647	2147483647	2147483647
Second	0x7FFFFFFF	0x7FFFFFFF	0x7FFFFFFF
Subtraction	2147483647	2147483647	2147483647
Third	0x12162019	0x12162019	0x12162019
Subtraction	303439897	303439897	303439897
Fourth	0x11031997	0x11031997	0x11031997
Subtraction	285415831	285415831	285415831
Fifth Subtraction	0x09161998	0x09161998	0x09161998
	152443288	152443288	152443288

Table 2: Output Comparisons (IRSIM)

Section 6: LTSPICE Code and Parasitic Extractions

Section 6.1: The SPICE Code

This section deals with the SPICE code that was used to measure the rise and fall times of all outputs. The code also measures the propagation delay at 50% voltage between input and output. 50% of V_{DD} is 1.65 V, so our delay measurements will be at that value. Here, 32-bit input B will be at a constant value 0x00000000. Input A will also be at that value for a time. It will be pulsed to the value 0xFFFFFFF for a time before returning to zero. The timing metrics will then be measured for each of the 32 bits of the S output.

As a side effect, the subtraction 0 + (-1) = -1 is also verified by this spice code, as all bits of output S will be pulsed to 1 and then back to zero. The waveforms are shown in the next section.

vdd vdd 0 DC 3.3	
vgnd gnd 0 DC 0	
va0 a0 0 PULSE(3.3 0	250n 100p 100p 500n 1000n)
val a1 0 PULSE(3.3 0	250n 100p 100p 500n 1000n)
va2 a2 0 PULSE(3.3 0	250n 100p 100p 500n 1000n)
va3 a3 0 PULSE(3.3 0	250n 100p 100p 500n 1000n)
va4 a4 0 PULSE(3.3 0	250n 100p 100p 500n 1000n)
va5 a5 0 PULSE(3.3 0	250n 100p 100p 500n 1000n)
va6 a6 0 PULSE(3.3 0	250n 100p 100p 500n 1000n)
va7 a7 0 PULSE(3.3 0	250n 100p 100p 500n 1000n)
va8 a8 0 PULSE(3.3 0	250n 100p 100p 500n 1000n)
va9 a9 0 PULSE(3.3 0	250n 100p 100p 500n 1000n)
va10 a10 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
val1 al1 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va12 a12 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va13 a13 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
val4 al4 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va15 a15 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
val6 a16 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va17 a17 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va18 a18 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va19 a19 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va20 a20 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va21 a21 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va22 a22 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va23 a23 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va24 a24 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va25 a25 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va26 a26 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va27 a27 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)
va28 a28 0 PULSE(3.3	0 250n 100p 100p 500n 1000n)

va29 a29 0 PULSE(3.3	8 0 250n	100p 100p	500n 1	000n)		
va30 a30 0 PULSE(3.3	8 0 250n	100p 100p	500n 1	000n)		
va31 a31 0 PULSE(3.3	8 0 250n	100p 100p	500n 1	000n)		
vb0 b0 0 DC 0						
vb1 b1 0 DC 0						
vb2 b2 0 DC 0						
vb3 b3 0 DC 0						
vb4 b4 0 DC 0						
vb5 b5 0 DC 0						
vb6 b6 0 DC 0						
vb7 b7 0 DC 0						
vb8 b8 0 DC 0						
vb9 b9 0 DC 0						
vb10 b10 0 DC 0						
vb11 b11 0 DC 0						
vb12 b12 0 DC 0						
vb13 b13 0 DC 0						
vb14 b14 0 DC 0						
vb15 b15 0 DC 0						
vb16 b16 0 DC 0						
vb17 b17 0 DC 0						
vb18 b18 0 DC 0						
vb19 b19 0 DC 0						
vb20 $b20$ 0 DC 0						
vb21 b21 0 DC 0						
vb22 b22 0 DC 0						
vb23 b23 0 DC 0						
vb24 b24 0 DC 0						
$v_{D21} = 0.21 + 0.20 + 0.000 + 0.000 + 0.000 + 0.00000 + 0.00000 + 0.0000 + 0.00000 + 0.0000000 + 0.0000 + 0.0000 + 0.0000 + 0$						
$v_{D25} = b_{25} = 0 = b_{0} = 0$						
$v_{\rm D20} = 0.000000000000000000000000000000000$						
v_{D2}^{r} ,						
vb20 $b20$ 0 DC 0						
$v_{\rm D23}$ v_{\rm						
$v_{\rm D} = 0$ $v_{\rm D} = 0$ $v_{\rm D} = 0$ $v_{\rm D} = 0$						
meas TRAN tro TRI	$G_{\rm V}(s0)$	VAT.= 33	RISE=1	TARG	V(s0)	VAL.=2 97
RTSE=1	0 (50)	•111 • 55	INIOLI I	1711(0	V (50)	
meas TRAN +r1 TR	$G_{\rm V}(s1)$	WAT - 33	סדפה–1	Ͳ៱ϷϹ	V(c1)	VAT-2 97
DIGE-1	G V(SI)	VAL33	KISE-I	IARG	V(SI)	VAL-2.97
M = 2	C V(c2)	WAT - 33	DTCE-1	Ͳ៱ϷϹ	$V(c^2)$	VAT-2 07
DIGE-1	G V(52)	VAL33	KISE-I	IANG	V (52)	VAL-2.97
ттоп-т титоп-т	C V(a3)	1771 - 22	DTCT-1	Ͳ៱៰៝	77 (5 3)	VAT-2 07
DICE-1	G V(SS)	VAU33	VIOR-I	IARG	v (53)	VAL-2.9/
	$C = \overline{V} \left(- A \right)$	τ <i>ι</i> ντ - ΟΟ	DTOR-1	$\Pi \Lambda D C$	$\nabla I (\alpha A)$	VAT-2 07
DICE-1	G V (S4)	VAL33	KIOR-I	IAKG	V (54)	VAL-2.9/
KTOF-T						

.meas TRAN tr5 TRIG V(s5) VAL=.33 RISE=1 TARG V(s5) VAL=2.97 RISE=1 .meas TRAN tr6 TRIG V(s6) VAL=.33 RISE=1 TARG V(s6) VAL=2.97 RISE=1 .meas TRAN tr7 TRIG V(s7) VAL=.33 RISE=1 TARG V(s7) VAL=2.97 RISE=1 .meas TRAN tr8 TRIG V(s8) VAL=.33 RISE=1 TARG V(s8) VAL=2.97 RISE=1 .meas TRAN tr9 TRIG V(s9) VAL=.33 RISE=1 TARG V(s9) VAL=2.97 RISE=1 .meas TRAN tr10 TRIG V(s10) VAL=.33 RISE=1 TARG V(s10) VAL=2.97 RISE=1 .meas TRAN tr11 TRIG V(s11) VAL=.33 RISE=1 TARG V(s11) VAL=2.97 RISE=1 .meas TRAN tr12 TRIG V(s12) VAL=.33 RISE=1 TARG V(s12) VAL=2.97 RISE=1 .meas TRAN tr13 TRIG V(s13) VAL=.33 RISE=1 TARG V(s13) VAL=2.97 RISE=1 .meas TRAN tr14 TRIG V(s14) VAL=.33 RISE=1 TARG V(s14) VAL=2.97 RISE=1 .meas TRAN tr15 TRIG V(s15) VAL=.33 RISE=1 TARG V(s15) VAL=2.97 RISE=1 .meas TRAN tr16 TRIG V(s16) VAL=.33 RISE=1 TARG V(s16) VAL=2.97 RISE=1 .meas TRAN tr17 TRIG V(s17) VAL=.33 RISE=1 TARG V(s17) VAL=2.97 RISE=1 .meas TRAN tr18 TRIG V(s18) VAL=.33 RISE=1 TARG V(s18) VAL=2.97 RISE=1 .meas TRAN tr19 TRIG V(s19) VAL=.33 RISE=1 TARG V(s19) VAL=2.97 RISE=1 .meas TRAN tr20 TRIG V(s20) VAL=.33 RISE=1 TARG V(s20) VAL=2.97 RISE=1 .meas TRAN tr21 TRIG V(s21) VAL=.33 RISE=1 TARG V(s21) VAL=2.97 RISE=1 .meas TRAN tr22 TRIG V(s22) VAL=.33 RISE=1 TARG V(s22) VAL=2.97 RISE=1 .meas TRAN tr23 TRIG V(s23) VAL=.33 RISE=1 TARG V(s23) VAL=2.97 RISE=1 .meas TRAN tr24 TRIG V(s24) VAL=.33 RISE=1 TARG V(s24) VAL=2.97 RISE=1 .meas TRAN tr25 TRIG V(s25) VAL=.33 RISE=1 TARG V(s25) VAL=2.97 RISE=1 .meas TRAN tr26 TRIG V(s26) VAL=.33 RISE=1 TARG V(s26) VAL=2.97 RISE=1 .meas TRAN tr27 TRIG V(s27) VAL=.33 RISE=1 TARG V(s27) VAL=2.97

RISE=1									
.meas TR	RAN	tr28	TRIG	V(s28)	VAL=.33	RISE=1	TARG	V(s28)	VAL=2.97
RISE=1									
.meas TR	AN	tr29	TRIG	V(s29)	VAL=.33	RISE=1	TARG	V(s29)	VAL=2.97
RISE=1									
.meas TR	AN	tr30	TRIG	V(s30)	VAL=.33	RISE=1	TARG	V(s30)	VAL=2.97
RISE=1									
.meas TR	AN	tr31	TRIG	V(s31)	VAL=.33	RISE=1	TARG	V(s31)	VAL=2.97
RISE=1									
.meas TH	RAN	tf0	TRIG	V(s0)	VAL=2.97	FALL=1	TARG	V(s0)	VAL=.33
FALL=1									
.meas TH	RAN	tf1	TRIG	V(s1)	VAL=2.97	FALL=1	TARG	V(s1)	VAL=.33
FALL=1									
.meas TH	RAN	tf2	TRIG	V(s2)	VAL=2.97	FALL=1	TARG	V(s2)	VAL=.33
FALL=1									
.meas TH	RAN	tf3	TRIG	V(s3)	VAL=2.97	FALL=1	TARG	V(s3)	VAL=.33
FALL=1									
.meas TH	RAN	tf4	TRIG	V(s4)	VAL=2.97	FALL=1	TARG	V(s4)	VAL=.33
FALL=1									
.meas TH	RAN	tf5	TRIG	V(s5)	VAL=2.97	FALL=1	TARG	V(s5)	VAL=.33
FALL=1									
.meas TH	RAN	tf6	TRIG	V(s6)	VAL=2.97	FALL=1	TARG	V(s6)	VAL=.33
FALL=1									
.meas TH	RAN	tf7	TRIG	V(s7)	VAL=2.97	FALL=1	TARG	V(s7)	VAL=.33
FALL=1									
.meas TH	RAN	tf8	TRIG	V(s8)	VAL=2.97	FALL=1	TARG	V(s8)	VAL=.33
FALL=1									
.meas TH	RAN	tf9	TRIG	V(s9)	VAL=2.97	FALL=1	TARG	V(s9)	VAL=.33
FALL=1									
.meas TR	AN	tf10	TRIG	V(s10)	VAL=2.97	FALL=1	TARG	V(s10)	VAL=.33
FALL=1									
.meas TR	RAN	tf11	TRIG	V(s11)	VAL=2.97	FALL=1	TARG	V(s11)	VAL=.33
FALL=1									
.meas TR	RAN	tf12	TRIG	V(s12)	VAL=2.97	FALL=1	TARG	V(s12)	VAL=.33
FALL=1									
.meas TR	RAN	tf13	TRIG	V(s13)	VAL=2.97	FALL=1	TARG	V(s13)	VAL=.33
FALL=1									
.meas TR	RAN	tf14	TRIG	V(s14)	VAL=2.97	FALL=1	TARG	V(s14)	VAL=.33
FALL=1									
.meas TR	AN	tf15	TRIG	V(s15)	VAL=2.97	FALL=1	TARG	V(s15)	VAL=.33
FALL=1									
.meas TR	AN	tf16	TRIG	V(s16)	VAL=2.97	FALL=1	TARG	V(s16)	VAL=.33
FALL=1									
.meas TR	AN	tf17	TRIG	V(s17)	VAL=2.97	FALL=1	TARG	V(s17)	VAL=.33
FALL=1									

.meas TRAN tf18 TRIG V(s18) VAL=2.97 FALL=1 TARG V(s18) VAL=.33 FALL=1 .meas TRAN tf19 TRIG V(s19) VAL=2.97 FALL=1 TARG V(s19) VAL=.33 FALL=1 .meas TRAN tf20 TRIG V(s20) VAL=2.97 FALL=1 TARG V(s20) VAL=.33 FALL=1 .meas TRAN tf21 TRIG V(s21) VAL=2.97 FALL=1 TARG V(s21) VAL=.33 FALL=1 .meas TRAN tf22 TRIG V(s22) VAL=2.97 FALL=1 TARG V(s22) VAL=.33 FALL=1 .meas TRAN tf23 TRIG V(s23) VAL=2.97 FALL=1 TARG V(s23) VAL=.33 FALL=1 .meas TRAN tf24 TRIG V(s24) VAL=2.97 FALL=1 TARG V(s24) VAL=.33 FALL=1 .meas TRAN tf25 TRIG V(s25) VAL=2.97 FALL=1 TARG V(s25) VAL=.33 FALL=1 .meas TRAN tf26 TRIG V(s26) VAL=2.97 FALL=1 TARG V(s26) VAL=.33 FALL=1 .meas TRAN tf27 TRIG V(s27) VAL=2.97 FALL=1 TARG V(s27) VAL=.33 FALL=1 .meas TRAN tf28 TRIG V(s28) VAL=2.97 FALL=1 TARG V(s28) VAL=.33 FALL=1 .meas TRAN tf29 TRIG V(s29) VAL=2.97 FALL=1 TARG V(s29) VAL=.33 FALL=1 .meas TRAN tf30 TRIG V(s30) VAL=2.97 FALL=1 TARG V(s30) VAL=.33 FALL=1 .meas TRAN tf31 TRIG V(s31) VAL=2.97 FALL=1 TARG V(s31) VAL=.33 FALL=1 .meas TRAN tplh0 TRIG V(a0) VAL=1.65 RISE=1 TARG V(s0) VAL=1.65 RISE=1 .meas TRAN tplh1 TRIG V(a1) VAL=1.65 RISE=1 TARG V(s1) VAL=1.65 RISE=1 .meas TRAN tplh2 TRIG V(a2) VAL=1.65 RISE=1 TARG V(s2) VAL=1.65 RISE=1 .meas TRAN tplh3 TRIG V(a3) VAL=1.65 RISE=1 TARG V(s3) VAL=1.65 RISE=1 .meas TRAN tplh4 TRIG V(a4) VAL=1.65 RISE=1 TARG V(s4) VAL=1.65 RISE=1 .meas TRAN tplh5 TRIG V(a5) VAL=1.65 RISE=1 TARG V(s5) VAL=1.65 RISE=1 .meas TRAN tplh6 TRIG V(a6) VAL=1.65 RISE=1 TARG V(s6) VAL=1.65 RISE=1 .meas TRAN tplh7 TRIG V(a7) VAL=1.65 RISE=1 TARG V(s7) VAL=1.65 RISE=1 .meas TRAN tplh8 TRIG V(a8) VAL=1.65 RISE=1 TARG V(s8) VAL=1.65

RISE=1						
.meas TRAN tplh9 TR	IG V(a	9) VAL=1	.65 RISE=1	TARG	V(s9) V	/AL=1.65
RISE=1						
.meas TRAN tplh10	TRIG	V(a10)	VAL=1.65	RISE=1	TARG	V(s10)
VAL=1.65 RISE=1						
.meas TRAN tplh11	TRIG	V(a11)	VAL=1.65	RISE=1	TARG	V(s11)
VAL=1.65 RISE=1						
.meas TRAN tplh12	TRIG	V(a12)	VAL=1.65	RISE=1	TARG	V(s12)
VAL=1.65 RISE=1						
.meas TRAN tplh13	TRIG	V(a13)	VAL=1.65	RISE=1	TARG	V(s13)
VAL=1.65 RISE=1						
.meas TRAN tplh14	TRIG	V(a14)	VAL=1.65	RISE=1	TARG	V(s14)
VAL=1.65 RISE=1						
.meas TRAN tplh15	TRIG	V(a15)	VAL=1.65	RISE=1	TARG	V(s15)
VAL=1.65 RISE=1						
.meas TRAN tplh16	TRIG	V(a16)	VAL=1.65	RISE=1	TARG	V(s16)
VAL=1.65 RISE=1						
.meas TRAN tplh17	TRIG	V(a17)	VAL=1.65	RISE=1	TARG	V(s17)
VAL=1.65 RISE=1						
.meas TRAN tplh18	TRIG	V(a18)	VAL=1.65	RISE=1	TARG	V(s18)
VAL=1.65 RISE=1						
.meas TRAN tplh19	TRIG	V(a19)	VAL=1.65	RISE=1	TARG	V(s19)
VAL=1.65 RISE=1						
.meas TRAN tplh20	TRIG	V(a20)	VAL=1.65	RISE=1	TARG	V(s20)
VAL=1.65 RISE=1						
.meas TRAN tplh21	TRIG	V(a21)	VAL=1.65	RISE=1	TARG	V(s21)
VAL=1.65 RISE=1						
.meas TRAN tplh22	TRIG	V(a22)	VAL=1.65	RISE=1	TARG	V(s22)
VAL=1.65 RISE=1						
.meas TRAN tplh23	TRIG	V(a23)	VAL=1.65	RISE=1	TARG	V(s23)
VAL=1.65 RISE=1						
.meas TRAN tplh24	TRIG	V(a24)	VAL=1.65	RISE=1	TARG	V(s24)
VAL=1.65 RISE=1						
.meas TRAN tplh25	TRIG	V(a25)	VAL=1.65	RISE=1	TARG	V(s25)
VAL=1.65 RISE=1						
.meas TRAN tplh26	TRIG	V(a26)	VAL=1.65	RISE=1	TARG	V(s26)
VAL=1.65 RISE=1						
.meas TRAN tplh27	TRIG	V(a27)	VAL=1.65	RISE=1	TARG	V(s27)
VAL=1.65 RISE=1						
.meas TRAN tplh28	TRIG	V(a28)	VAL=1.65	RISE=1	TARG	V(s28)
VAL=1.65 RISE=1				D.T.C 1		
.meas TRAN tplh29	TRIG	V(a29)	VAL=1.65	RISE=1	'I'ARG	V(s29)
VAL=1.65 RISE=1				D.T.C 1		
.meas TRAN tplh30	'I'RIG	V(a30)	VAL=1.65	RISE=1	'I'ARG	V(s30)
VAL=1.65 RISE=1						

TRAN tplh31 TRIG V(a31) VAL=1.65 RISE=1 TARG V(s31) .meas VAL=1.65 RISE=1 .meas TRAN tphl0 TRIG V(a0) VAL=1.65 FALL=1 TARG V(s0) VAL=1.65 FALL=1 .meas TRAN tphl1 TRIG V(a1) VAL=1.65 FALL=1 TARG V(s1) VAL=1.65 FALL=1 .meas TRAN tphl2 TRIG V(a2) VAL=1.65 FALL=1 TARG V(s2) VAL=1.65 FALL=1 .meas TRAN tphl3 TRIG V(a3) VAL=1.65 FALL=1 TARG V(s3) VAL=1.65 FALL=1 .meas TRAN tph14 TRIG V(a4) VAL=1.65 FALL=1 TARG V(s4) VAL=1.65 FALL=1 .meas TRAN tphl5 TRIG V(a5) VAL=1.65 FALL=1 TARG V(s5) VAL=1.65 FALL=1 .meas TRAN tphl6 TRIG V(a6) VAL=1.65 FALL=1 TARG V(s6) VAL=1.65 FALL=1 .meas TRAN tphl7 TRIG V(a7) VAL=1.65 FALL=1 TARG V(s7) VAL=1.65 FALL=1 .meas TRAN tph18 TRIG V(a8) VAL=1.65 FALL=1 TARG V(s8) VAL=1.65 FALL=1 .meas TRAN tphl9 TRIG V(a9) VAL=1.65 FALL=1 TARG V(s9) VAL=1.65 FALL=1 .meas TRAN tphl10 TRIG V(a10) VAL=1.65 FALL=1 TARG V(s10) VAL=1.65 FALL=1 .meas TRAN tph111 TRIG V(a11) VAL=1.65 FALL=1 TARG V(s11) VAL=1.65 FALL=1 .meas TRAN tphl12 TRIG V(a12) VAL=1.65 FALL=1 TARG V(s12) VAL=1.65 FALL=1 .meas TRAN tphl13 TRIG V(a13) VAL=1.65 FALL=1 TARG V(s13) VAL=1.65 FALL=1 .meas TRAN tph114 TRIG V(a14) VAL=1.65 FALL=1 TARG V(s14) VAL=1.65 FALL=1 .meas TRAN tph115 TRIG V(a15) VAL=1.65 FALL=1 TARG V(s15) VAL=1.65 FALL=1 .meas TRAN tphl16 TRIG V(a16) VAL=1.65 FALL=1 TARG V(s16) VAL=1.65 FALL=1 .meas TRAN tphl17 TRIG V(a17) VAL=1.65 FALL=1 TARG V(s17) VAL=1.65 FALL=1 .meas TRAN tph118 TRIG V(a18) VAL=1.65 FALL=1 TARG V(s18) VAL=1.65 FALL=1 .meas TRAN tphl19 TRIG V(a19) VAL=1.65 FALL=1 TARG V(s19) VAL=1.65 FALL=1 .meas TRAN tph120 TRIG V(a20) VAL=1.65 FALL=1 TARG V(s20) VAL=1.65 FALL=1 .meas TRAN tphl21 TRIG V(a21) VAL=1.65 FALL=1 TARG V(s21)

<pre>.meas TRAN tphl22 TRIG V(a22) VAL=1.65 FALL=1 TARG V(s22) VAL=1.65 FALL=1 .meas TRAN tphl23 TRIG V(a23) VAL=1.65 FALL=1 TARG V(s23) VAL=1.65 FALL=1 .meas TRAN tphl24 TRIG V(a24) VAL=1.65 FALL=1 TARG V(s24) VAL=1.65 FALL=1</pre>
VAL=1.65 FALL=1 .meas TRAN tphl23 TRIG V(a23) VAL=1.65 FALL=1 TARG V(s23) VAL=1.65 FALL=1 .meas TRAN tphl24 TRIG V(a24) VAL=1.65 FALL=1 TARG V(s24) VAL=1.65 FALL=1 TARG V(s24)
<pre>.meas TRAN tphl23 TRIG V(a23) VAL=1.65 FALL=1 TARG V(s23) VAL=1.65 FALL=1 .meas TRAN tphl24 TRIG V(a24) VAL=1.65 FALL=1 TARG V(s24) VAL=1.65 FALL=1</pre>
VAL=1.65 FALL=1 .meas TRAN tphl24 TRIG V(a24) VAL=1.65 FALL=1 TARG V(s24) VAL=1.65 FALL=1
.meas TRAN tphl24 TRIG V(a24) VAL=1.65 FALL=1 TARG V(s24) VAL=1.65 FALL=1
VAL=1.65 FALL=1
.meas TRAN tpn125 TRIG V(a25) VAL=1.65 FALL=1 TARG V(s25)
VAL=1.65 FALL=1
.meas TRAN tph126 TRIG V(a26) VAL=1.65 FALL=1 TARG V(s26)
VAL=1.65 FALL=1
.meas TRAN tph127 TRIG V(a27) VAL=1.65 FALL=1 TARG V(s27)
VAL=1.65 FALL=1
.meas TRAN tph128 TRIG V(a28) VAL=1.65 FALL=1 TARG V(s28)
VAL=1.65 FALL=1
.meas TRAN tph129 TRIG V(a29) VAL=1.65 FALL=1 TARG V(s29)
VAL=1.65 FALL=1
.meas TRAN tph130 TRIG V(a30) VAL=1.65 FALL=1 TARG V(s30)
VAL=1.65 FALL=1
.meas TRAN tph131 TRIG V(a31) VAL=1.65 FALL=1 TARG V(s31)
VAL=1.65 FALL=1
.tran 1000n
.include C:\Electric\kim_models.txt

Figure 65: SPICE Code That Measures Rise Time, Fall Time, and Propagation Delay

Section 6.2: Parasitic Analysis

After finishing the 32-bit Carry Look-Ahead Adder layout, LTSPICE produced the following parasitic RC extraction netlist for the top level cell.

```
*** TOP LEVEL CELL: cla32{lay}
         net@17#2contact@9 metal-2-metal-3
                                              gnd
Xc2@0
                                                     net@1
                                                               gnd
net@9#1contact@2 metal-1-metal-2 vdd cla64 c1
Xcla1600 a16 a17 a26 a27 a28 a29 a30 a31 a18 a19 a20 a21 a22 a23
a24 a25 b16 b17 b26 b27 b28 b29 b30 b31 b18 b19 b20 b21 b22 b23
b24 b25 net@17 gnd gnd gnd s16 s17 s26 s27 s28 s29 s30 s31 s18
s19 s20 s21 s22 s23 s24 s25 vdd cla64 cla16
Xcla1601 a0 a1 a10 a11 a12 a13 a14 a15 a2 a3 a4 a5 a6 a7 a8 a9 b0
b1 b10 b11 b12 b13 b14 b15 b2 b3 b4 b5 b6 b7 b8 b9 gnd net@1 gnd
net@9 s0 s1 s10 s11 s12 s13 s14 s15 s2 s3 s4 s5 s6 s7 s8 s9 vdd
cla64 cla16
** Extracted Parasitic Capacitors ***
C0 net@17#2contact@9 metal-2-metal-3 0 18.714fF
C1 net@1 0 6.078fF
C2 net@9#1contact@2 metal-1-metal-2 0 4.453fF
C3 net@17 0 17.627fF
C4 s16 0 7.288fF
C5 s17 0 6.129fF
C6 s18 0 6.129fF
C7 s19 0 6.129fF
C8 s20 0 6.129fF
C9 s21 0 6.129fF
C10 s22 0 6.129fF
C11 s23 0 6.129fF
C12 s24 0 6.129fF
C13 s25 0 6.129fF
C14 s26 0 6.129fF
C15 s27 0 6.129fF
C16 s28 0 6.129fF
C17 s29 0 6.129fF
C18 s30 0 6.129fF
C19 s31 0 6.129fF
C20 net@9 0 4.951fF
C21 s0 0 6.129fF
C22 s1 0 6.129fF
C23 s2 0 6.37fF
C24 s3 0 6.37fF
C25 s4 0 6.37fF
C26 s5 0 6.37fF
C27 s6 0 6.37fF
C28 s7 0 6.37fF
```

C29 s8 0 6.37fF C30 s9 0 6.37fF C31 s10 0 6.37fF C32 s11 0 6.37fF C33 s12 0 6.37fF C34 s13 0 6.37fF C35 s14 0 6.37fF C36 s15 0 6.37fF ** Extracted Parasitic Resistors *** R0 net@9 net@9#1contact@2 metal-1-metal-2 4.979 R1 net@17#2contact@9 metal-2-metal-3 net@17#2contact@9 metal-2metal-3##0 6.921 C37 net@17#2contact@9_metal-2-metal-3##0 0 15.639fF R2 net@17#2contact@9 metal-2-metal-3##0 net@17#2contact@9 metal-2-metal-3##1 6.921 C38 net@17#2contact@9_metal-2-metal-3##1 0 15.639fF R3 net@17#2contact@9 metal-2-metal-3##1 net@17 6.921

Figure 66: Extracted Parasitic RC for Top-Level 32-bit CLA Circuit

г	•	11 20		• , •	• ,	1. /	1 . 1	4 1 1	1 1
HOL	convenience	311 37	OUITOUIT	naracitic	canacitore	are lister	a in fh	ie tanie	helow
TOL	convenience.	$an J_{\Delta}$	output	Darastic	capacitors	are note	սոս	ic table	
	,								

Output	Capacitance
sO	6.129fF
s1	6.129fF
s2	6.37fF
s3	6.37fF
s4	6.37fF
s5	6.37fF
s6	6.37fF
s7	6.37fF
s8	6.37fF
s9	6.37fF
s10	6.37fF
s11	6.37fF
s12	6.37fF
s13	6.37fF
s14	6.37fF
s15	6.37fF
s16	7.288fF
s17	6.129fF
s18	6.129fF
s19	6.129fF
s20	6.129fF
s21	6.129fF
s22	6.129fF
s23	6.129fF
s24	6.129fF
s25	6.129fF
s26	6.129fF
s27	6.129fF
s28	6.129fF
s29	6.129fF
s30	6.129fF
s31	6.129fF

Table 3: Output Parasitic Capacitances of 32-bit CLA

We then examine the extracted RC parasitic analysis generated by LTSPICE for the sub-components. Specifically, we will be analyzing the parasitic resistors present in the layouts for the CMOS Inverter, the XOR Gate, the NAND Gate, and the PG4 module, which functions as a 4-input AND gate. Below are some of the LTSPICE-generated parasitic netlists of those components.

```
*** SUBCIRCUIT cla64 inv well FROM CELL inv well{lay}
.SUBCKT cla64 inv well gnd in out vdd
Mnmos@0 out in#3nmos@0 poly-right gnd gnd N L=0.35U W=0.875U
AS=3.752P AD=1.263P PS=12.075U PD=4.55U
Mpmos@0 out in#1pmos@0 poly-left vdd vdd P L=0.35U W=1.75U
AS=5.176P AD=1.263P PS=14.175U PD=4.55U
** Extracted Parasitic Capacitors ***
C0 out 0 3.234fF
C1 in 0 0.313fF
C2 in#2pin@0 polysilicon-1 0 0.201fF
** Extracted Parasitic Resistors ***
R0 in#1pmos@0 poly-left in#1pmos@0 poly-left##0 9.455
R1 in#1pmos@0 poly-left##0 in#1pmos@0 poly-left##1 9.455
R2 in#1pmos@0 poly-left##1 in#1pmos@0 poly-left##2 9.455
R3 in#1pmos@0 poly-left##2 in#1pmos@0 poly-left##3 9.455
R4 in#1pmos@0 poly-left##3 in#1pmos@0 poly-left##4 9.455
R5 in#1pmos@0 poly-left##4 in#1pmos@0 poly-left##5 9.455
R6 in#1pmos@0 poly-left##5 in#1pmos@0 poly-left##6 9.455
R7 in#1pmos@0 poly-left##6 in#1pmos@0 poly-left##7 9.455
R8 in#1pmos@0 poly-left##7 in#1pmos@0 poly-left##8 9.455
R9 in#1pmos@0 poly-left##8 in#2pin@0 polysilicon-1 9.455
R10 in#2pin@0 polysilicon-1 in#2pin@0 polysilicon-1##0 8.525
R11 in#2pin@0 polysilicon-1##0 in#2pin@0 polysilicon-1##1 8.525
R12 in#2pin@0 polysilicon-1##1 in#2pin@0 polysilicon-1##2 8.525
R13 in#2pin@0 polysilicon-1##2 in#2pin@0 polysilicon-1##3 8.525
R14 in#2pin@0 polysilicon-1##3 in#2pin@0 polysilicon-1##4 8.525
R15 in#2pin@0 polysilicon-1##4 in#3nmos@0 poly-right 8.525
R16 in#2pin@0 polysilicon-1 in 9.3
.ENDS cla64 inv well
*** SUBCIRCUIT cla64 inv FROM CELL inv{lay}
.SUBCKT cla64 inv gnd in out vdd
Mnmos@1 out in#2nmos@1 poly-right gnd gnd N L=0.35U W=0.875U
AS=0.842P AD=1.263P PS=3.675U PD=4.55U
Mpmos@1 out in#0pmos@1 poly-left vdd vdd P L=0.35U W=1.75U
AS=1.684P AD=1.263P PS=5.425U PD=4.55U
** Extracted Parasitic Capacitors ***
C0 out 0 1.592fF
C1 in 0 0.313fF
C2 in#1pin@3 polysilicon-1 0 0.169fF
** Extracted Parasitic Resistors ***
R0 in#0pmos@1 poly-left in#0pmos@1 poly-left##0 7.75
```

```
R1 in#0pmos@1 poly-left##0 in#0pmos@1 poly-left##1 7.75
R2 in#0pmos@1 poly-left##1 in#0pmos@1 poly-left##2 7.75
R3 in#0pmos@1 poly-left##2 in#1pin@3 polysilicon-1 7.75
R4 in#1pin@3 polysilicon-1 in#1pin@3 polysilicon-1##0 8.138
R5 in#1pin@3 polysilicon-1##0 in#1pin@3 polysilicon-1##1 8.138
R6 in#1pin@3 polysilicon-1##1 in#1pin@3 polysilicon-1##2 8.138
R7 in#1pin@3 polysilicon-1##2 in#2nmos@1 poly-right 8.138
R8 in#1pin@3 polysilicon-1 in 9.3
.ENDS cla64 inv
*** SUBCIRCUIT cla64 nand FROM CELL nand{lay}
.SUBCKT cla64 nand A B gnd O vdd
Mnmos@3 O A#2nmos@3 poly-right net@134 gnd N L=0.35U W=0.875U
AS=0.459P AD=0.893P PS=1.925U PD=3.092U
Mnmos@4 net@134 B#2nmos@4 poly-right gnd gnd N L=0.35U W=0.875U
AS=4.977P AD=0.459P PS=14.875U PD=1.925U
Mpmos@3 vdd A#0pmos@3 poly-left O vdd P L=0.35U W=1.75U AS=0.893P
AD=4.165P PS=3.092U PD=11.2U
Mpmos@4 0 B#0pmos@4 poly-left vdd vdd P L=0.35U W=1.75U AS=4.165P
AD=0.893P PS=11.2U PD=3.092U
** Extracted Parasitic Capacitors ***
CO O O 4.079fF
C1 B 0 0.293fF
C2 A 0 1.123fF
C3 B#1pin@3 polysilicon-1 0 0.212fF
** Extracted Parasitic Resistors ***
R0 B#0pmos@4 poly-left B#0pmos@4 poly-left##0 9.688
R1 B#0pmos@4 poly-left##0 B#0pmos@4 poly-left##1 9.688
R2 B#0pmos@4 poly-left##1 B#0pmos@4 poly-left##2 9.688
R3 B#0pmos@4 poly-left##2 B#0pmos@4 poly-left##3 9.688
R4 B#0pmos@4 poly-left##3 B#0pmos@4 poly-left##4 9.688
R5 B#0pmos@4 poly-left##4 B#0pmos@4 poly-left##5 9.688
R6 B#0pmos@4 poly-left##5 B#0pmos@4 poly-left##6 9.688
R7 B#0pmos@4 poly-left##6 B#0pmos@4 poly-left##7 9.688
R8 B#0pmos@4 poly-left##7 B#0pmos@4 poly-left##8 9.688
R9 B#0pmos@4 poly-left##8 B#0pmos@4 poly-left##9 9.688
R10 B#0pmos@4 poly-left##9 B#0pmos@4 poly-left##10 9.688
R11 B#0pmos@4 poly-left##10 B#1pin@3 polysilicon-1 9.688
R12 B#1pin@3 polysilicon-1 B#1pin@3 polysilicon-1##0 9.817
R13 B#1pin@3 polysilicon-1##0 B#1pin@3 polysilicon-1##1 9.817
R14 B#1pin@3 polysilicon-1##1 B#2nmos@4 poly-right 9.817
R15 B#1pin@3 polysilicon-1 B#1pin@3 polysilicon-1##0 7.233
R16 B#1pin@3 polysilicon-1##0 B#1pin@3 polysilicon-1##1 7.233
R17 B#1pin@3 polysilicon-1##1 B 7.233
```

```
R18 A#0pmos@3 poly-left A#0pmos@3 poly-left##0 9.854
R19 A#0pmos@3 poly-left##0 A#0pmos@3 poly-left##1 9.854
R20 A#0pmos@3 poly-left##1 A#0pmos@3 poly-left##2 9.854
R21 A#0pmos@3 poly-left##2 A#0pmos@3 poly-left##3 9.854
R22 A#0pmos@3 poly-left##3 A#0pmos@3 poly-left##4 9.854
R23 A#0pmos@3 poly-left##4 A#0pmos@3 poly-left##5 9.854
R24 A#0pmos@3 poly-left##5 A#0pmos@3 poly-left##6 9.854
R25 A#0pmos@3 poly-left##6 A#0pmos@3 poly-left##7 9.854
R26 A#0pmos@3 poly-left##7 A#0pmos@3 poly-left##8 9.854
R27 A#0pmos@3 poly-left##8 A#0pmos@3 poly-left##9 9.854
R28 A#0pmos@3 poly-left##9 A#0pmos@3 poly-left##10 9.854
R29 A#0pmos@3 poly-left##10 A#0pmos@3 poly-left##11 9.854
R30 A#0pmos@3 poly-left##11 A#0pmos@3 poly-left##12 9.854
R31 A#0pmos@3 poly-left##12 A 9.854
R32 A#2nmos@3 poly-right A 7.75
.ENDS cla64 nand
*** SUBCIRCUIT cla64 xor FROM CELL xor{lay}
.SUBCKT cla64 xor A B qnd O vdd
Xinv@0 gnd A net@51#1contact@14 metal-1-polysilicon-1 vdd
cla64 inv
Xinv@1 gnd B net@68#1contact@15 metal-1-polysilicon-1 vdd
cla64 inv
Mnmos@0 0 net@51#2nmos@0 poly-right net@2 gnd N L=0.35U W=0.875U
AS=0.842P AD=0.689P PS=3.675U PD=2.363U
Mnmos@1 net@3 A#0nmos@1 poly-right O gnd N L=0.35U W=0.875U
AS=0.689P AD=0.459P PS=2.363U PD=1.925U
Mnmos@2 gnd B#1nmos@2 poly-right net@3 gnd N L=0.35U W=0.875U
AS=0.459P AD=8.116P PS=1.925U PD=20.3U
Mnmos@3 net@2 net@68#2nmos@3 poly-right gnd gnd N L=0.35U
W=0.875U AS=8.116P AD=0.842P PS=20.3U PD=3.675U
Mpmos@0 net@17 net@51 vdd vdd P L=0.35U W=1.75U AS=10.872P
AD=0.919P PS=23.975U PD=2.8U
Mpmos@1 O A#1pmos@1 poly-left net@17 vdd P L=0.35U W=1.75U
AS=0.919P AD=0.689P PS=2.8U PD=2.363U
Mpmos@2 net@17 B#0pmos@2 poly-left O vdd P L=0.35U W=1.75U
AS=0.689P AD=0.919P PS=2.363U PD=2.8U
Mpmos@3 vdd net@68 net@17 vdd P L=0.35U W=1.75U AS=0.919P
AD=10.872P PS=2.8U PD=23.975U
** Extracted Parasitic Capacitors ***
CO O O 4.765fF
C1 net@2 0 2.135fF
C2 net@17 0 1.664fF
C3 net@51#1contact@14 metal-1-polysilicon-1 0 0.92fF
```

```
C4 net@68#1contact@15 metal-1-polysilicon-1 0 0.92fF
C5 A 0 3.339fF
C6 B 0 7.934fF
C7 A#1pmos@1 poly-left 0 0.115fF
C8 B#Opmos@2 poly-left 0 0.115fF
** Extracted Parasitic Resistors ***
R0 net@51 net@51##0 7.75
R1 net@51##0 net@51##1 7.75
R2 net@51##1 net@51##2 7.75
R3 net@51##2 net@51#1contact@14 metal-1-polysilicon-1 7.75
R4 net@51#1contact@14 metal-1-polysilicon-1
net@51#1contact@14 metal-1-polysilicon-1##0 8.138
R5 net@51#1contact@14 metal-1-polysilicon-1##0
net@51#1contact@14 metal-1-polysilicon-1##1 8.138
R6 net@51#1contact@14 metal-1-polysilicon-1##1
net@51#1contact@14 metal-1-polysilicon-1##2 8.138
R7 net@51#1contact@14 metal-1-polysilicon-1##2
net@51#2nmos@0 poly-right 8.138
R8 A#Onmos@1 poly-right A#Onmos@1 poly-right##0 9.079
R9 A#Onmos@1 poly-right##0 A#Onmos@1 poly-right##1 9.079
R10 A#0nmos@1 poly-right##1 A#0nmos@1 poly-right##2 9.079
R11 A#Onmos@1 poly-right##2 A#Onmos@1 poly-right##3 9.079
R12 A#0nmos@1 poly-right##3 A#0nmos@1 poly-right##4 9.079
R13 A#0nmos@1 poly-right##4 A#0nmos@1 poly-right##5 9.079
R14 A#Onmos@1 poly-right##5 A#1pmos@1 poly-left 9.079
R15 net@68 net@68##0 7.75
R16 net@68##0 net@68##1 7.75
R17 net@68##1 net@68##2 7.75
R18 net@68##2 net@68#1contact@15 metal-1-polysilicon-1 7.75
R19 net@68#1contact@15 metal-1-polysilicon-1
net@68#1contact@15 metal-1-polysilicon-1##0 8.138
R20 net@68#1contact@15 metal-1-polysilicon-1##0
net@68#1contact@15 metal-1-polysilicon-1##1 8.138
R21 net@68#1contact@15 metal-1-polysilicon-1##1
net@68#1contact@15 metal-1-polysilicon-1##2 8.138
R22 net@68#1contact@15 metal-1-polysilicon-1##2
net@68#2nmos@3 poly-right 8.138
R23 B#0pmos@2 poly-left B#0pmos@2 poly-left##0 9.079
R24 B#0pmos@2 poly-left##0 B#0pmos@2 poly-left##1 9.079
R25 B#0pmos@2 poly-left##1 B#0pmos@2 poly-left##2 9.079
R26 B#0pmos@2 poly-left##2 B#0pmos@2 poly-left##3 9.079
R27 B#0pmos@2 poly-left##3 B#0pmos@2 poly-left##4 9.079
R28 B#0pmos@2 poly-left##4 B#0pmos@2 poly-left##5 9.079
R29 B#0pmos@2 poly-left##5 B#1nmos@2 poly-right 9.079
R30 B#0pmos@2 poly-left B 7.75
```

```
R31 A#1pmos@1 poly-left A 7.75
.ENDS cla64 xor
*** SUBCIRCUIT cla64 pg4 FROM CELL pg4{lay}
.SUBCKT cla64 pq4 qnd p0 p1 p2 p3 pq vdd
Xinv well@1 gnd net@0 pg vdd cla64 __inv well
Mnmos@0 net@98 p1#2nmos@0 poly-right net@97 gnd N L=0.35U
W=0.875U AS=0.459P AD=0.459P PS=1.925U PD=1.925U
Mnmos@1 net@97 p0#2nmos@1 poly-right net@0 gnd N L=0.35U W=0.875U
AS=0.903P AD=0.459P PS=2.975U PD=1.925U
Mnmos@2 net@99 p2#2nmos@2 poly-right net@98 gnd N L=0.35U
W=0.875U AS=0.459P AD=0.459P PS=1.925U PD=1.925U
Mnmos@3 gnd p3#2nmos@3 poly-right net@99 gnd N L=0.35U W=0.875U
AS=0.459P AD=7.656P PS=1.925U PD=21U
Mpmos@0 vdd p1#0pmos@0 poly-left net@0 vdd P L=0.35U W=1.75U
AS=0.903P AD=3.361P PS=2.975U PD=8.531U
Mpmos@1 net@0 p0#0pmos@1 poly-left vdd vdd P L=0.35U W=1.75U
AS=3.361P AD=0.903P PS=8.531U PD=2.975U
Mpmos@2 net@0 p2#0pmos@2 poly-left vdd vdd P L=0.35U W=1.75U
AS=3.361P AD=0.903P PS=8.531U PD=2.975U
Mpmos@3 vdd p3#0pmos@3 poly-left net@0 vdd P L=0.35U W=1.75U
AS=0.903P AD=3.361P PS=2.975U PD=8.531U
** Extracted Parasitic Capacitors ***
C0 net@0 0 5.842fF
C1 p0 0 0.662fF
C2 p1 0 1.086fF
C3 p2 0 1.476fF
C4 p3 0 1.853fF
** Extracted Parasitic Resistors ***
R0 p0#0pmos@1 poly-left p0#0pmos@1 poly-left##0 7.233
R1 p0#0pmos@1 poly-left##0 p0#0pmos@1 poly-left##1 7.233
R2 p0#0pmos@1 poly-left##1 p0 7.233
R3 p0 p0##0 9.538
R4 p0##0 p0##1 9.538
R5 p0##1 p0##2 9.538
R6 p0##2 p0##3 9.538
R7 p0##3 p0##4 9.538
R8 p0##4 p0##5 9.538
R9 p0##5 p0##6 9.538
R10 p0##6 p0##7 9.538
R11 p0##7 p0##8 9.538
R12 p0##8 p0##9 9.538
R13 p0##9 p0##10 9.538
R14 p0##10 p0##11 9.538
```

```
R15 p0##11 p0#2nmos@1 poly-right 9.538
R16 p1#0pmos@0 poly-left p1#0pmos@0 poly-left##0 9.3
R17 p1#0pmos@0 poly-left##0 p1#0pmos@0 poly-left##1 9.3
R18 p1#0pmos@0 poly-left##1 p1#0pmos@0 poly-left##2 9.3
R19 p1#0pmos@0 poly-left##2 p1#0pmos@0 poly-left##3 9.3
R20 p1#0pmos@0 poly-left##3 p1#0pmos@0 poly-left##4 9.3
R21 p1#0pmos@0 poly-left##4 p1 9.3
R22 p1 p1##0 9.989
R23 p1##0 p1##1 9.989
R24 p1##1 p1##2 9.989
R25 p1##2 p1##3 9.989
R26 p1##3 p1##4 9.989
R27 p1##4 p1##5 9.989
R28 p1##5 p1##6 9.989
R29 p1##6 p1##7 9.989
R30 p1##7 p1#2nmos@0 poly-right 9.989
R31 p2#0pmos@2 poly-left p2#0pmos@2 poly-left##0 9.128
R32 p2#0pmos@2 poly-left##0 p2#0pmos@2 poly-left##1 9.128
R33 p2#0pmos@2 poly-left##1 p2#0pmos@2 poly-left##2 9.128
R34 p2#0pmos@2 poly-left##2 p2#0pmos@2 poly-left##3 9.128
R35 p2#0pmos@2 poly-left##3 p2#0pmos@2 poly-left##4 9.128
R36 p2#0pmos@2 poly-left##4 p2#0pmos@2 poly-left##5 9.128
R37 p2#0pmos@2 poly-left##5 p2#0pmos@2 poly-left##6 9.128
R38 p2#0pmos@2 poly-left##6 p2#0pmos@2 poly-left##7 9.128
R39 p2#0pmos@2 poly-left##7 p2 9.128
R40 p2 p2##0 9.079
R41 p2##0 p2##1 9.079
R42 p2##1 p2##2 9.079
R43 p2##2 p2##3 9.079
R44 p2##3 p2##4 9.079
R45 p2##4 p2##5 9.079
R46 p2##5 p2#2nmos@2 poly-right 9.079
R47 p3#0pmos@3 poly-left p3#0pmos@3 poly-left##0 9.658
R48 p3#0pmos@3 poly-left##0 p3#0pmos@3 poly-left##1 9.658
R49 p3#0pmos@3 poly-left##1 p3#0pmos@3 poly-left##2 9.658
R50 p3#0pmos@3 poly-left##2 p3#0pmos@3 poly-left##3 9.658
R51 p3#0pmos@3 poly-left##3 p3#0pmos@3 poly-left##4 9.658
R52 p3#0pmos@3 poly-left##4 p3#0pmos@3 poly-left##5 9.658
R53 p3#0pmos@3 poly-left##5 p3#0pmos@3 poly-left##6 9.658
R54 p3#0pmos@3 poly-left##6 p3#0pmos@3 poly-left##7 9.658
R55 p3#0pmos@3 poly-left##7 p3#0pmos@3 poly-left##8 9.658
R56 p3#0pmos@3 poly-left##8 p3#0pmos@3 poly-left##9 9.658
R57 p3#0pmos@3 poly-left##9 p3#0pmos@3 poly-left##10 9.658
R58 p3#0pmos@3 poly-left##10 p3#0pmos@3 poly-left##11 9.658
R59 p3#0pmos@3 poly-left##11 p3 9.658
```

R60 p3 p3##0 6.717 R61 p3##0 p3##1 6.717 R62 p3##1 p3#2nmos@3_poly-right 6.717 .ENDS cla64__pg4

Figure 67: Extracted Parasitic RC for Lower-Level Components

Below is a table of the R_P and R_N values extracted from the parasitic analysis. All resistor units are in ohms. As mentioned earlier, the inverter and NAND gates also have slightly taller versions of their layouts to allow more room for wiring in between their PUNs and PDNs. Their values are also recorded here.

Component	R _P (Ω)	R _N (Ω)
Inverter (Tall)	8.138	7.75
Inverter	9.455	8.525
Inverter (no wells)	9.455	8.525
NAND (A input)	9.854	7.75
NAND (B input)	9.688	9.817
NAND (Tall version, A input)	9.3	9.61
NAND (Tall version, B input)	6.2	9.106
XOR	9.079	9.079
PG4	8.82975	6.717

Table 4: Parasitic $R_{\rm P}$ and $R_{\rm N}$ extracted from Fundamental Building Blocks

Section 7: Measurements in LTSPICE for Delays

In this section, we will discuss the results of the SPICE code shown in the previous section for both schematic and layout.

Section 7.1: Schematic

The input and output waveforms generated by the Section 6 SPICE code for the 32-bit CLA schematic are shown below. Each figure shows 16 bits each.

Just to reiterate, the SPICE Code also performs the following numerical verification.

					V(b31)					V(b31)
-1.0mV					¥(b30)					V(b30)
-1.0mV				÷	V(b29)					V(530)
-1.0mV					V(b28)					
-1.0mV		:	:	:	V(b27)	:	:	1	:	====== V(b28)
-1.0mV					V(b26)					₩ V(b27)
-1.0mV	1			1	V(b25)		1	1	1	─── V(b26)
-1.0mV		;	:	:	V(b24)	:	:	:	:	─── V(b25)
-1.0mV					V(b23)					= V(b24)
-1.0mV					Y(623)					= V(b23)
-1.0mV				1	¥(022)				1	— V(b22)
-1.0mV					V[D21]					— V(b21)
-1.0mV	1			:	V(b2U)	:		:		₩ V(b20)
-1.0mV					V(b19)					₩ V(b19)
-1.0mV					V(b18)					→ V(b18)
1.0-1/					V(b17)					
-1.0mV-					V(b16)					
-1.0mV- 0.0μs	0.1µs	0.2µs	0.3µs	0.4µs	0.5µs	0.6µs	0.7µs	0.8µs	0.9µs	ν(D16) 1.0μs

Figure 70: Input B[31:16]

2.61/					V(s31)					
1.7V									V(s31)	
-0.3V					V(s30)					
3.6V									V(c20)	
-0.3V					We20)				*1350/	
3.6V	1				*fecol					
-0.3V									V(s29)	
3.6V					V(s28)					
1.7V									V(s28)	
3.6V					V[s27]					
1.7V									V(+27)	
-0.3V					V[s26]				V(SZ/)	
3.6V										
-0.3V					NK- 0.F1				V(s26)	
3.6V					V[s25]					
1.7V									V(c25)	
3.6V					V(s24)				*(525)	
1.7V										
-0.3V					V(s23)		:		V(s24)	
1.7V										
-0.3V					We22)				V(s23)	
3.6V					Aforsi					
-0.3V									Vient	
3.6V					V(s21)				v(szz)	
1.7V									V(s21)	
-0.3V-					V(s20)					
1.7V									V(s20)	
-0.3V					V(=19)					
3.6V					.()				V(-10)	
-0.3V		-							V[S19]	
3.6V					V[s18]					
1.7V									V(s18)	
3.6V					V(s17)					
1.7V									V(s17)	
-0.3V					V(s16)					
3.67									V(s16)	
-0.3V									-,,	
0.0µs	0.1µs	0.2µs	0.3µs	0.4µs	0.5µs	0.6µs	0.7µs	0.8µs	0.9µs	1.0µs

Figure 72: Schematic LTSPICE - Output S[31:16]

-14					V[s15]				
rv								V(s15)	
3V-					Vis14				
N								V(-14)	
N.								V(S14)	
V-					V[s13]				
₩ 								V(s13)	
14- 34-					V(s12)				
V								14-12)	
3V-					Vie11)			V(SIZ)	
V-								1 : :	
v								V(s11)	
V					V[s10]				
V									
W.					Vie9)			V(\$10)	
V			[[(00)			1 :	
								V(s9)	
					V(s8)			(00)	
V=									
V					V(s7)			V(s8)	
V.					-()		1	V(s7)	
w								•(57)	
V					V(s6)				
V								V(s6)	
V					V(s5)				
v								V(s5)	
v								.(00)	
V					V(s4)				
V								V(s4)	
<u></u>					V[s3]				
v							i	V(s3)	
v									
V					v(62)				
V								V(s2)	
					V(s1)				
V-								V(s1)	
ý.					3/1= (1)			-(31)	
v				,	¥(80)		7		
V-								V(s0)	
V-1	0.100	0.200	0.300	0 Aue	0.500	f fue	0.700	0.8me 0.9me	1.0
0.0µ0	0. ·µ5	o.c.µs	0.3µ5	0.4hs	5.5µ5	0.0µ5		0.0µ5 0.5µ5	1.0

Figure 73: Schematic LTSPICE - Output S[15:0]

These are the results gathered by the .measure commands. Note that all values are in picoseconds.

Bit	Rise Time (ps)	Fall Time (ps)	t _{plh} (ps)	t _{phl} (ps)	t _p (ps)
0	99.08	97.81	467.63	427.63	447.6255
1	103.41	101.43	481.84	438.37	460.1045
2	99.76	101.11	437.52	403.74	420.634
3	101.63	98.98	393.08	367.27	380.1725
4	98.07	100.29	467.68	426.55	447.116
5	103.42	101.45	481.84	438.38	460.1085
6	99.76	101.11	437.52	403.75	420.6385
7	101.63	98.98	393.08	367.27	380.177
8	98.07	100.29	467.68	426.51	447.0975
9	103.42	101.42	481.84	438.35	460.0955
10	99.76	101.12	437.52	403.73	420.6265
11	101.63	98.98	393.08	367.26	380.1695
12	98.07	100.21	467.68	426.48	447.081
13	103.42	101.41	481.84	438.32	460.081
14	99.76	101.11	437.52	403.69	420.605
15	101.63	98.97	393.08	367.24	380.1585
16	97.61	99.92	467.58	426.89	447.233
17	103.42	101.45	481.84	438.37	460.105
18	99.76	101.11	437.52	403.74	420.634
19	101.63	98.98	393.08	367.27	380.1725
20	98.08	100.29	467.69	426.55	447.1165
21	103.42	101.45	481.84	438.38	460.109
22	99.76	101.11	437.52	403.75	420.6385
23	101.63	98.98	393.08	367.27	380.177
24	98.07	100.29	467.68	426.51	447.0975
25	103.42	101.42	481.84	438.35	460.0955
26	99.76	101.12	437.52	403.73	420.6265
27	101.63	98.98	393.08	367.26	380.17
28	98.07	100.21	467.68	426.48	447.081
29	103.42	101.41	481.84	438.32	460.081
30	99.76	101.11	437.52	403.69	420.605
31	101.63	98.98	393.08	367.24	380.159

Table 5: Schematic - Rise Time, Fall Time, and Propagation Delay for All Bits

Below are the average values across all bits:

- Average Rise Time: 100.74 ps
- Average Fall Time: 100.36 ps
- Average Propagation Delay between Input and Output: 427.0185 ps

Section 7.2: Layout

Below are the waveforms generated by the Section 6 SPICE code for the 32-bit CLA layout. Because the same input waveforms are used, only the output sum bits are shown for the layout. Even from the graphs, the output rise and fall times are noticeably less steep than the schematic waveforms.

s	0.1µs	0.ʵs	0.3µs	0.4µs	0.5µs	0.6µs	0.7µs	0.8µs	0.9µs
								V(ST6)	
)//- 1-C)	
					V(s16)				
								V(s17)	
					v(s17)				
								V(S10)	
								V(c18)	
					V(s18)				
								V(s19)	
					*[819]				
					100			V(320)	
								V(s20)	
					V(s20)				
								V(s21)	
		1			•(421)			1 1/2 242	1
		1	1		V(=21)			V(S22)	
			I					1/(-22)	
					V(s22)				
								V(s23)	
		1							1
		1			Vis23)			V(524)	
			l					V(e24)	
					V[s24]				
								V(s25)	
					VIs251			1 (020)	
								V(\$25)	
					¥[\$26]				
								V(s27)	
			[
					V[s27]			(020)	
								V(<28)	
					V(s28)				
								V(s29)	
		1			*[523]				1
			1		Me-200			1(000)	
								V(s30)	
					1000				
					V(= 30)				

Figure 74: Layout LTSPICE - Output S[31:16]

0.0µs (.1µs I).ʵs	0.3µs	0.4µs	0.5µs	0.6µs	0.7µs	0.8µs	0.9µs 1
IV-								V(SO)	
N					1			1//-0)	
W-L					V(s0)		1	(01)	
V								V(s1)	
Y-					V(s1)				
/V=								V(s2)	
W-		-			V[s2]				
w.								V(\$3)	
W								1/(#2)	
W	1		1		Visit	1	1		
Ve								V(s4)	
W					V(s4)				
Week								V(s5)	
W-	1	-			v[s5]			14-5	
W					14 F)			V(30)	
W								V(s6)	
N-					V(s6)				
Ve								V(s7)	
W					V(s7)				
_M								V(s8)	
W-									
N-	1				V(s8)		1	· V(53)	
We								V/(eQ)	
12					V(s9)				
ηγ								V(s10)	
W-	1	1			ala rol				
N	1				Mie101		- i	(STI)	
V.		[Watth	
					V[s11]				
V								V(s12)	
W					V(s12)				
We								V(s13)	
N-		-							
W-	1				Vie13)		(• (• • •)	
V								V(s14)	
14					V(s14)				
/V=								V(s15)	

Below are the metrics gathered by the .measure commands in the SPICE code. This time, all units are in nanoseconds.

Bit	Rise Time (ns)	Fall Time (ns)	tplh (ns)	tphl (ns)	tp (ns)
0	1.6947	1.0267	2.1432	1.6739	1.908515
1	1.7027	1.0296	2.2131	1.7266	1.969865
2	1.7836	1.0709	2.2570	1.7569	2.00693
3	1.8039	1.0846	2.1466	1.6678	1.90721
4	1.7148	1.0365	2.1549	1.6780	1.916425
5	1.7102	1.0329	2.2162	1.7285	1.97233
6	1.7861	1.0728	2.2582	1.7576	2.007895
7	1.8048	1.0850	2.1470	1.6680	1.90749
8	1.7176	1.0382	2.1561	1.6788	1.91745
9	1.7131	1.0342	2.2174	1.7292	1.97327
10	1.7894	1.0753	2.2599	1.7585	2.00918
11	1.8086	1.0868	2.1486	1.6689	1.908745
12	1.7210	1.0401	2.1576	1.6797	1.918685
13	1.7411	1.0466	2.2293	1.7364	1.98281
14	1.7919	1.0772	2.2611	1.7592	2.01013
15	1.8096	1.0873	2.1490	1.6692	1.909095
16	1.7274	1.0442	2.1601	1.6819	1.92098
17	1.7027	1.0296	2.2131	1.7266	1.969865
18	1.7776	1.0663	2.2541	1.7552	2.00463
19	1.7970	1.0813	2.1437	1.6661	1.904915
20	1.7088	1.0330	2.1520	1.6763	1.914135
21	1.7033	1.0299	2.2134	1.7268	1.97009
22	1.7801	1.0682	2.2553	1.7559	2.0056
23	1.7979	1.0817	2.1441	1.6663	1.905195
24	1.7116	1.0346	2.1533	1.6771	1.91517
25	1.7063	1.0312	2.2146	1.7275	1.971025
26	1.7835	1.0708	2.2570	1.7568	2.006885
27	1.8017	1.0835	2.1457	1.6672	1.90645
28	1.7150	1.0366	2.1548	1.6780	1.916405
29	1.7346	1.0437	2.2263	1.7347	1.980475
30	1.7860	1.0727	2.2582	1.7575	2.007835
31	1.8028	1.0841	2.1461	1.6675	1.9068

Table 6: Layout - Rise Time, Fall Time, and Propagation Delay for All Bits

Below are the average values across all bits.

- Average Rise Time: 1.7540 ns
- Average Fall Time: 1.0568 ns
- Average Propagation Delay: 1.951 ns

Section 7.3: Comparison

As with the previous project, the layout timing metrics are far slower than the schematic timing metrics. This is to be expected because the layout is riddled with parasitic effects while the schematic timing metrics are idealized (without parasitic effects).

When comparing average values, the output layout rise time is 17.41 times slower than its schematic value. The output layout fall time is 10.53 times slower than its schematic counterpart. Finally, the average propagation delay is 4.57 times slower than its schematic counterpart.
Section 8: Measurement of Power, Chip Area, and Transistor Count

In this section, we measure some more metrics that aren't related to the timing of the circuit. These include steady-state power dissipation, chip area, and total transistor count. The other measurements when it comes to timing and delay have already been measured and analyzed in Section 7.

Section 8.1: Power Measurement

Like in previous projects, we measure the current at V_{DD} to determine the steadystate power dissipation of the layout. The I(V_{DD}) graph below was generated by the same SPICE code that was used to measure timing metrics. That is why two peaks are present because the current peaks as the inputs are switching. However, we will be measuring the current at the middle portion of that line, between the two peaks.

Figure 76: $I(V_{DD})$ - Current at V_{DD} (Layout)

The steady state current was measured as -286.828μ A. As with previous projects, we will use the absolute value of this current, as there is no such thing as negative power dissipation.

$$P = V_{DD}I_{DD}$$

 $P = 3.3 V * 286.828 \mu A$
 $P = 946.5324 \mu W$

Section 8.2: Total Chip Area

Here, we use Electric VLSI's measuring tool to measure the dX and dY values of the 32-bit CLA layout. We then use those values to calculate the total chip area.

$$dX = 1400\lambda; dY = 2886\lambda$$

$$A = dX * dY$$

$$A = 1400\lambda * 2886\lambda$$

$$A = 4,040,400\lambda^{2}$$

$$A = 4,040,400 * (.175 \ \mu m)^{2}$$

$$A = 123,737.25 \ \mu m^{2}$$

Section 8.3: Total Transistor Count

Like in previous projects, the basic building blocks that made this circuit possible are the low-level CMOS gates that were designed in previous projects. Specifically, the gates used were inverters, two-input NAND gates, and XOR gates. Below are the transistor counts for those gates.

$$T_{inv} = 2$$
$$T_{nand} = 4$$
$$T_{xor} = 12$$

The C1 module uses two NAND gates and one inverter. The C2 module uses four NAND gates and two inverters. The C3 module uses six NAND gates and three inverters. The PG4 module uses one inverter, as well as eight transistors to realize the four input AND function. Their transistor counts are shown below.

$$T_{C1} = 2(4) + 2 = 10$$
$$T_{C2} = 4(4) + 2(2) = 20$$
$$T_{C3} = 6(4) + 3(2) = 30$$
$$T_{PG4} = 8 + 2 = 10$$

The modified full adder itself uses two XOR gates, a NAND gate, and an inverter. Its transistor count is shown below.

$$T_{FA} = 2(12) + 4 + 2 = 30$$

With all these components lined up, we then calculate the transistor count of the four-bit CLA module, which contains 4 full adders, a C1 module, a C2 module, two C3 modules, and a PG4 module. Below is its transistor count.

$$T_{CLA-4} = 4(30) + 10 + 20 + 2(30) + 10$$

 $T_{CLA-4} = 220$

The 16-bit CLA module uses four 4-bit CLAs, a C1 module, a C2 module, two C3 modules, and a PG4 module. Below is its transistor count.

$$T_{CLA-16} = 4(220) + 10 + 20 + 2(30) + 10$$

 $T_{CLA-16} = 980$

The 32-bit CLA module uses two 16-bit CLAs and a C1 module. Below is the final transistor count for the entire circuit.

$$T_{CLA-32} = 2(980) + 10$$
 $T_{CLA-32} = 1970$

Section 9: Conclusion

In conclusion, by increasing the complexity of the adder circuit, we were able to decrease the time it took to perform binary addition. This is the core of the Carry Look-Ahead Adder, and it is its primary advantage against its simpler counterpart, the Ripple-Carry Adder. Here, we see the Space-Time Tradeoff at work. We increase the size and complexity of our circuit in order that it may perform binary addition faster than a 32-bit Ripple Carry Adder.

We also observe just how much parasitic resistors and capacitors can affect the performance of the circuit. As seen in Section 7, the output rise and fall times for the schematic were both approximately 0.1 ns for all 32 outputs. That number goes up to 1 ns in the layout! For the propagation delays, the number goes from 0.4 ns to 2 ns, almost 5 times slower!

References

[1] A. Singhal, "Getting the best of both worlds: Space-time trade-offs in algorithms.," *Hackernoon*. [Online]. Available: <u>https://hackernoon.com/getting-the-best-of-both-</u>worlds-space-time-trade-offs-in-algorithms-b62116aaf3ef. [Accessed: 08-Dec-2019].

[2] S. Das, "Carry Look-Ahead Adder," GeeksforGeeks, 25-Nov-2019. [Online]. Available: <u>https://www.geeksforgeeks.org/carry-look-ahead-adder/</u>. [Accessed: 08-Dec-2019].

[3] J. V. der Spiegel, "Carry Look-Ahead Adder," Carry Look Ahead Adder. [Online]. Available:

https://web.archive.org/web/20110925185302/http://www.seas.upenn.edu/~ese171/lab/C arryLookAhead/CarryLookAheadF01.html. [Accessed: 15-Dec-2019].